GENERAL STRUCTURAL NOTES

01100 GENERAL REQUIREMENTS

1. PER CONTRACT DRAWING S-0001, THE DESIGN OF THE PROJECT SHALL CONFORM WITH THE 2016 SAN FRANCISCO BUILDING CODE, WHICH COMPRISES THE 2016 CALIFORNIA BUILDING CODE AND 2016 SAN FRANCISCO AMENDMENTS. THE COURTESY BUILDING PERMIT WAS APPROVED BASED ON THE 2016 SFBC AND 2016 CBC.

2. MATERIALS AND WORKMANSHIP TO CONFORM WITH THE 2019 EDITION OF THE CALIFORNIA BUILDING CODE.

3. DRAWINGS INDICATE GENERAL AND TYPICAL DETAILS OF CONSTRUCTION. WHERE CONDITIONS ARE NOT SPECIFICALLY INDICATED BUT ARE OF SIMILAR CHARACTER TO DETAILS SHOWN, USE SIMILAR DETAILS OF CONSTRUCTION, SUBJECT TO REVIEW BY THE OWNER'S REPRESENTATIVE.

4. DETAILS ON SHEETS TITLED "TYPICAL" OR DETAILS TITLED "TYPICAL" APPLY TO SITUATIONS OCCURRING ON THE PROJECT THAT ARE THE SAME OR SIMILAR TO THOSE SPECIFICALLY REFERENCED. SUCH DETAILS ARE NOT NOTED AT EACH LOCATION THAT THEY OCCUR.

5. THE CONTRACTOR IS RESPONSIBLE FOR COORDINATING THE WORK OF ALL TRADES AND FOR CHECKING DIMENSIONS. NOTIFY THE OWNER'S REPRESENTATIVE OF ANY DISCREPANCIES AND RESOLVE BEFORE PROCEEDING WITH THE WORK.

6. DO NOT SCALE THE DRAWINGS.

7. PROVIDE MEASURES NECESSARY TO PROTECT THE STRUCTURE DURING CONSTRUCTION. SUCH MEASURES INCLUDE, BUT MAY NOT BE LIMITED TO, BRACING AND SHORING FOR LOADS DURING CONSTRUCTION AND FOR TEMPORARY SUPPORT OF THE BUILDING. RETAIN A REGISTERED CIVIL ENGINEER WHOM IS PROPERLY QUALIFIED TO DESIGN BRACING, SHORING, ETC. VISITS TO THE SITE BY THE OWNER'S REPRESENTATIVE WILL NOT INCLUDE OBSERVATION OF THE ABOVE NOTED ITEMS.

8. INFORMATION SHOWN ON THE DRAWINGS RELATED TO EXISTING CONDITIONS REPRESENTS THE PRESENT KNOWLEDGE, BUT WITHOUT GUARANTEE OF ACCURACY. REPORT CONDITIONS THAT CONFLICT WITH THE CONTRACT DOCUMENTS TO THE OWNER'S REPRESENTATIVE. DO NOT DEVIATE FROM THE CONTRACT DOCUMENTS WITHOUT WRITTEN DIRECTION FROM THE OWNER'S REPRESENTATIVE.

9. CONTRACTOR SHALL REMOVE ALL CONSTRUCTION DEBRIS FROM THE SITE AND DISPOSE OFF SITE.

10. VERIFY ALL DIMENSIONS IN THE FIELD. NOTIFY ENGINEER OF ANY DISCREPANCIES BEFORE PROCEEDING WITH WORK.

11. ALL EXISTING HAZARDOUS MATERIALS SHALL BE REMOVED AND DISPOSED OF IN ACCORDANCE WITH LOCAL AND STATE CODES. NO NEW OR EXISTING CONSTRUCTION SHALL CONTAIN HAZARDOUS OR PROHIBITED MATERIALS.

12. THE CONTRACTOR SHALL TAKE ALL NECESSARY PRECAUTIONS TO PROTECT AREAS ADJACENT TO NEW CONSTRUCTION FROM NOISE, DEBRIS AND DUST THROUGHOUT THE PERFORMANCE OF THE CONTRACT.

13. ANY DAMAGE TO EXISTING UTILITIES OR FACILITIES SHALL BE REPAIRED OR REPLACED AT CONTRACTO'S EXPENSE AND TO THE SATISFACTION OF THE OWNER.

14. CONTRACTOR SHALL BE SOLELY AND COMPLETELY RESPONSIBLE FOR CONDITIONS OF THE JOB SITE INCLUDING SAFETY OF PERSONS AND PROPERTY AND FOR ALL NECESSARY INDEPENDENT ENGINEERING REVIEWS OF THESE CONDITIONS.

15. CONTRACTOR SHALL MAINTAIN THE STREETS AND ANY OTHER PUBLIC RIGHTS-OF-WAY IN A CLEAN, SAFE AND USABLE CONDITION. ANY SPILLS OF SOIL, ROCK OR CONSTRUCTION DEBRIS MUST BE REMOVED FROM THE PUBLICLY OWNED PROPERTY DURING CONSTRUCTION AND UPON COMPLETION OF THE PROJECT.

16. THE ENGINEER-OF-RECORD SHALL PERFORM STRUCTURAL OBSERVATIONS PER CBC 1704. THE ENGINEER SHALL REPORT ANY OBSERVED DEFICIENCIES TO THE OWNER, CONTRACTOR AND BUILDING OFFICIAL, AND SUBMIT A FINAL SUMMARY REPORT STATING SITE VISITS HAVE BEEN MADE, NOTING ANY DEFICIENCIES, THAT CORRECTIVE WORK HAS BEEN COMPLETED, AND THAT CONSTRUCTION PROCEEDED IN GENERAL CONFORMANCE WITH THE APPROVED PLANS.

17. THE CONTRACTOR SHALL GIVE 48 HOURS NOTICE TO THE ENGINEER PRIOR TO ALL REQUIRED TESTING AND OBSERVATIONS U.O.N. CONTRACTOR SHALL CALL ENGINEER FOR OBSERVATION OF ALL FOUNDATION STEEL AND EXCAVATIONS PRIOR TO PLACING CONCRETE. CONTRACTOR SHALL CALL ENGINEER FOR HOLD DOWN OBSERVATION PRIOR TO SHEATHING, AND FRAMING, NAILING AND SHEAR WALL OBSERVATION PRIOR TO COVERING EITHER SIDE OF SHEATHING WITH FINISHED MATERIALS. THE CONTRACTOR SHALL CALL ENGINEER TO OBSERVE ALL STRUCTURAL MEMBERS AND CONNECTIONS FOR CONFORMANCE WITH THE CONSTRUCTION DOCUMENTS PRIOR TO CONCEALMENT WITH FINISH MATERIALS.

01400 SPECIAL INSPECTIONS

1. AN INDEPENDENT TESTING AGENCY AND SPECIAL INSPECTOR SHALL BE RETAINED BY THE CONTRACTOR TO PERFORM TESTS AND INSPECTIONS.

2. THE FOLLOWING ITEMS REQUIRE TESTS AND INSPECTIONS IN ACCORDANCE WITH THE REQUIREMENTS OF CHAPTER 17 - "STRUCTURAL TESTS AND INSPECTIONS" OF THE 2019 CALIFORNIA BUILDING CODE:

3. IF INITIAL TESTS OR INSPECTIONS MADE BY THE OWNER'S TESTING AGENCY REVEAL THAT ANY PORTION OF THE WORK DOES NOT COMPLY WITH THE CONTRACT DOCUMENTS, ADDITIONAL TESTS, INSPECTIONS, AND NECESSARY REPAIRS WILL BE MADE AT THE CONTRACTOR'S EXPENSE.

05000 STRUCTURAL STEEL

A. NONE

1. STRUCTURAL STEEL, FABRICATION AND ERECTION METHODS SHALL CONFORM TO THE CURRENT ADDITION OF THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) "CODE OF STANDARD PRACTICE FOR STEEL BUILDINGS AND BRIDGES."

2. ALL STEEL SHOP DRAWINGS SHALL BE SUBMITTED TO THE ENGINEER FOR APPROVAL PRIOR TO FABRICATION AND INSTALLATION.

3. ALL STRUCTURAL STEEL SHALL BE PRIMED.

4. STEEL SHALL BE THE FOLLOWING:

ROLLED PLATES, BARS AND ANGLES - ASTM A36

05400 COLD FORMED STEEL FRAMING (C.F.S.)

1. COLD FORMED FABRICATION SHALL CONFORM TO AISI SPECIFICATION FOR THE DESIGN OF COLD-FORMED STEEL STRUCTURAL MEMBERS.

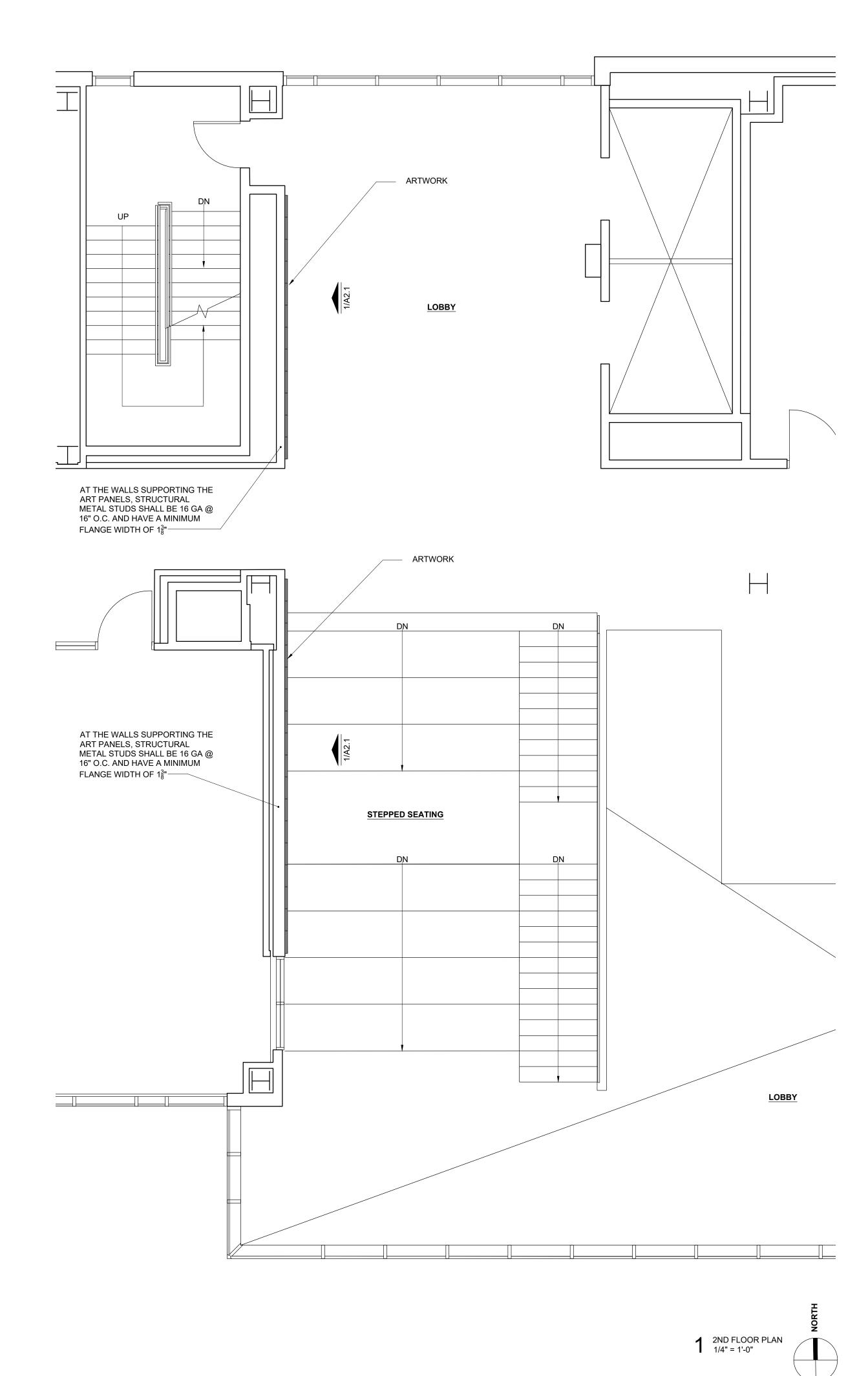
2. ALL GALVANIZED STUDS AND/OR JOISTS 54, 68 AND 97 MIL SHALL BE FORMED FROM STEEL THAT CONFORMS TO THE REQUIREMENTS OF ASTM A446. GRADE D, WITH A MINIMUM YIELD STRENGTH OF 50,000 PSI.

3. ALL GALVANIZED STUDS AND/OR JOISTS 33 AND 43 MIL AND ALL GALVANIZED TRACK, BRIDGING AND ACCESSORIES SHALL BE FORMED FROM STEEL THAT CONFORMS TO THE REQUIREMENTS OF ASTM A446. GRADE A, WITH A MINIMUM YIELD STRENGTH OF 33,000 PSI.

4. METAL STUD PROPERTIES SHALL BE PER METAL STUD MANUFACTURERS ASSOCIATION STANDARDS.

47000 DECICAL CRITERIA

17000 DESIGN CRITERIADESIGN PER 2016 CALIFORNIA BUILDING CODE


1. DEAD LOADS: VARY BASED ON ACTUAL BUILDING WEIGHTS.

2. LIVE LOADS: PARTITION LATERAL LOAD: 5 PSF

3. SEISMIC DESIGN: BASE SHEAR $F_p = 1.44 W_p$ (ULTIMATE STRENGTH DESIGN), $R_p = 2.5$, $A_p = 2.5$, $A_p = 1.5$

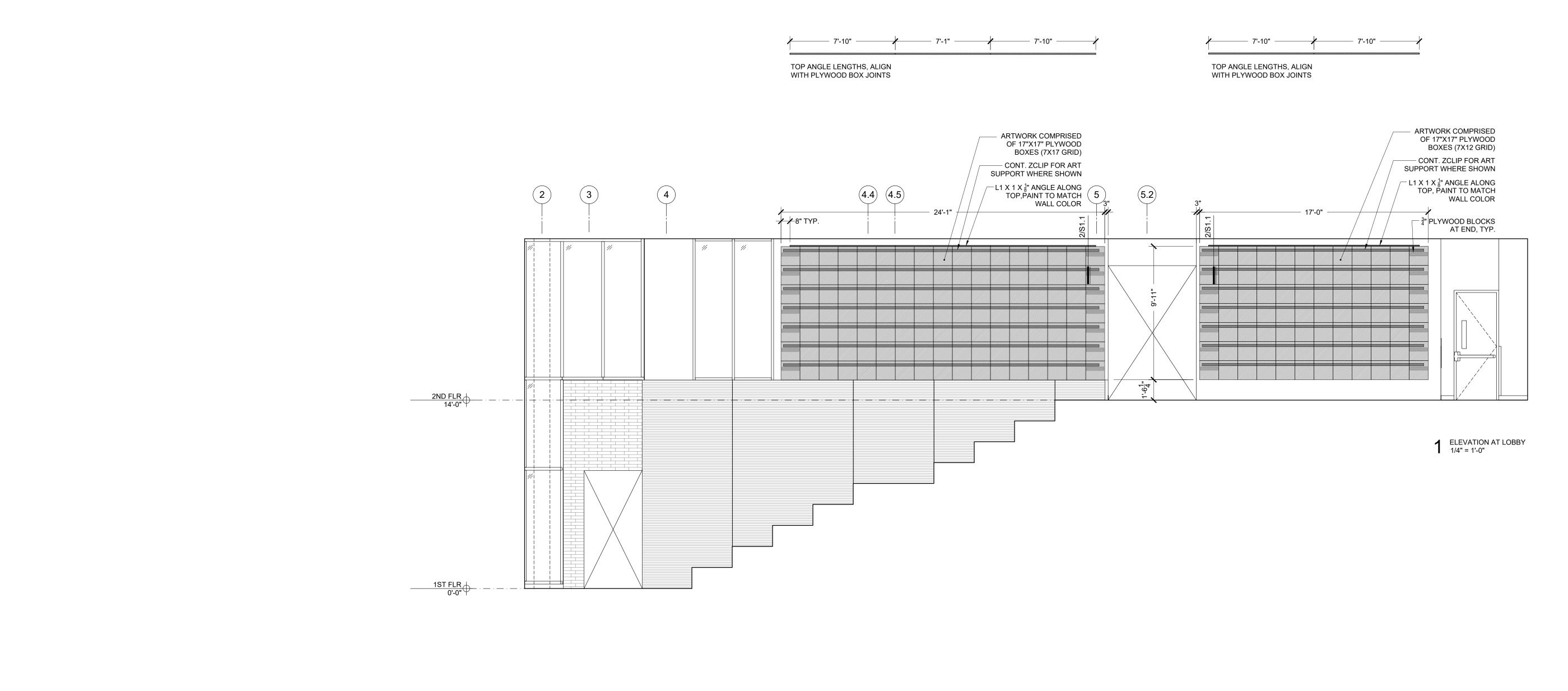
4. WIND DESIGN: RISK CATEGORY II, DOES NOT APPLY, INTERIOR APPLICATION V_{ULT} = 100 MPH (3 SECOND GUST) V_{ASD} = 85 MPH

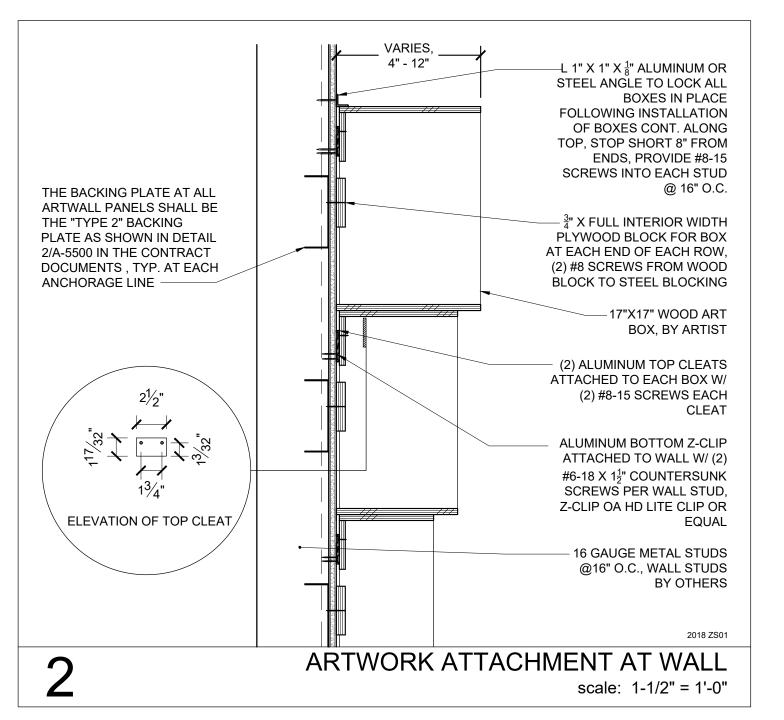
EXPOSURE N/A $GC_{Pl} = +/-0.18$

ARCHITECT:
ADBC Architecture Inc.
945 Kingston Avenue
Piedmont, CA 94611
Contact:
benjamin@daringacorotis.com
510 604 6059

OWNERS:
PHILLIP HUA
tel: 415-722-9067
email: art@philliphua.com

PROJECT ADDRESS: 1550 EVANS AVENUE SAN FRANCISCO, CA 94124


SOUTHEAST COMMUNITY CENTER ART


rev.	issue	date
	PERMIT SUBMITTAL	12/11/20

ARTWORK LOCATION AND DETAIL

S_{0.1}

sheet

ARCHITECT:
ADBC Architecture Inc.
945 Kingston Avenue
Piedmont, CA 94611
Contact:
benjamin@daringacorotis.com
510 604 6059

OWNERS:
PHILLIP HUA
tel: 415-722-9067
email: art@philliphua.com

PROJECT ADDRESS: 1550 EVANS AVENUE SAN FRANCISCO, CA 94124

SOUTHEAST COMMUNITY CENTER ART

rev.	issue	date
	PERMIT SUBMITTAL	12/11/20

ARTWORK LOCATION AND DETAIL

S_{1.1}

sheet

20-18 Phillip Hua Artwork at Southeast Community Center Calculations

1550 Evans Avenue San Francisco, CA Permit Submittal 11 December 2020

Loads 1-3

Attachments 4--5

-18 Hua Artua	K Loads			11/16/2020
1				
Dend Long	<u> </u>			
(AZ) 17"	× 17" × 12" boxes	12 165	= 50 4 1bs	
	× 17" × 10" bores	10.5 145	431 Hos	
	x 17" x 8" boxes		438 lbs	
(41) 17"	x 17" x 6" boxes	6.25 135	294 lbs	
	x 17" X 4" boxes	5. 5 lbs	127 1bs	
(203)			1794 lbs	
	+ 1794 lbs = 8.84			
arg. w	7 203 - 0.00	241		
. + / 64	2 = 1794 165 119" x (264"+ 229")	= 44 £		
w 1 / F1	119" x (204"+229")	ι.π γ.ν		
Live Load				
		1		
7 pst	lateral partition !	sa d		
Wind Load				
N/A,	artwork is inside	building		
			a make as an important plant as	

20-18 Hun Artwork Loads	11/16/2020 2
Seismic Loading ASCE 7-16, Ch. 13, non-s	tructural components
Sps = 1.2, see following page for seismic crp = 2.5 appendages + Rp = 2.5 ornamentation Z = 10' h = 10' Tp = 1.0	values
$F_{p} = \frac{0.4 \text{ap} \text{Sps} \text{Wp}}{\text{Re/Ip}} \left(1 + 2 \frac{2}{\text{h}}\right) = \frac{0.4.2}{2.5}$ $= 1.44$	
Vertical force 7-0.2 Sps Wp =0.2-1.2	wp = 0.24 wp
$F_{p} = 1.44 \cdot 4.4 \text{ psf} = 6.4 \text{ psf} \Leftrightarrow > 5.0$ $Vertical \text{ force} = 0.24 \cdot 4.4 \text{ psf} = 1.1 \text{ psf}$	governs

Hua Artwork

1550 Evans Ave, San Francisco, CA 94124, USA

Latitude, Longitude: 37.7429616, -122.3871248

NAPA Auto Parts -Genuine Parts Company

<i></i>
9

PGAd

C_{RS}

C_{R1}

0.571

0.929

0.91

Goo	gle	-6	Map data ©2020
Date		11/16/2020, 11:19:57 PM	
Design C	Code Reference Document	ASCE7-16	
Risk Cat	egory	II	
Site Clas	35	D - Default (See Section 11.4.3)	
Туре	Value	Description	
SS	1.5	MCE _R ground motion. (for 0.2 second period)	
S ₁	0.6	MCE _R ground motion. (for 1.0s period)	
S _{MS}	1.8	Site-modified spectral acceleration value	
S _{M1}	nuli -See Section 11.4.8	Site-modified spectral acceleration value	
SDS	1.2	Numeric seismic design value at 0.2 second SA	
S _{D1}	null -See Section 11.4.8	Numeric seismic design value at 1.0 second SA	
Тура	Value	Description	
SDC	nuil -See Section 11.4.8	Seismic design category	
Fa	1.2	Site amplification factor at 0.2 second	
F _v	null -See Section 11.4.8	Site amplification factor at 1.0 second	
PGA	0.571	MCE _G peak ground acceleration	
FPGA	1.2	Site amplification factor at PGA	
PGAM	0.685	Site modified peak ground acceleration	
T_L	12	Long-period transition period in seconds	
SsRT	1.789	Probabilistic risk-targeted ground motion. (0.2 second)	
SsUH	1.926	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration	
SsD	1.5	Factored deterministic acceleration value. (0.2 second)	
S1RT	0.705	Probabilistic risk-targeted ground motion. (1.0 second)	
S1UH	0.774	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.	
S1D	0.6	Factored deterministic acceleration value. (1.0 second)	

Factored deterministic acceleration value. (Peak Ground Acceleration)

Mapped value of the risk coefficient at short periods

Mapped value of the risk coefficient at a period of 1 s

20-18 Hua Artwork	Attachments	11/7/2020 4
Check attach	ment to wall (per 17"x17	1"b.x)
DL	Max box wt/size = 17" x	(17"x12"=121bs
EL	0.24.1216s = 2.9 16s V	
	1.44.12 lbs = 17.3 lbs 4	→
Asb	load combos	
LCB)		1.0.12 bs + 0.7.2.9 + 0.7.17.31 14 lbs + + 12.1 bs +>
LC 10 (0.6-12165 -0.7.2.9 t0.7.17.316 2.2165 $\sqrt{+12.1105} \longleftrightarrow$
Che	ck screws #8-15 screws	(0.164" diam., 5" head)
	$1 = 72 \text{ lbs}$ $\frac{14}{164} + \frac{12}{72} =$	0.25 <u>4</u> 1.0 O.K.

Allowable Screw Connection Capacity (Pounds per screw)

Thick- ness	Fy: Yield	Fu:	#6 screw (0,138" dia; 5/16" head)		#8 screw (0.164" dia; 5/16" head)		TATION STATE AND ADDRESS OF NAME OF STREET	screw 0.340" head)		screw (0.340" head)		screw 0.409" head)
(Mils)1	(KSI)		Shear	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	Tension
18	33	33	44	24	48	29	52	33	55	38	60	44
27	33	33	82	37	89	43	96	50	102	57	110	66
30	33	33	95	40	103	48	111	55	118	63	127	73
33	33	45	151	61	164	72	177	84	188	95	203	110
43	33	45	2147	79	244	94	263	109	280	124	302	144
54	33	45	2147	84 7	303 7	1187	370	137	394	156	424	180
68	33	45	2147	84 7	303 7	1187	4067	1597	525 7	196	600	227
97	33	45	2147	84 7	303 7	1187	4067	159 7	525 ⁷	205 7	704 7	275 7
118	33	45	2147	84 7	303 7	1187	406 7	159 ⁷	525 7	205 7	7047	2757
54	50	65	2147	84 7	303 7	1187	4067	159 ⁷	525 ⁷	205 7	613	261
68	50	65	2147	847	303 7	1187	4067	1597	525 7	2057	704 7	2757
97	50	65	2147	84 7	303 7	1187	406 ⁷	159 ⁷	525 ⁷	205 7	704 ⁷	275 7
118	50	65	2147	847	303 7	1187	4067	159 7	525 7	205 7	704 ⁷	2757

18 Hua	Ar	twork	At	tachv	ne	its	i i									12	171	202
Chec	k	seis	mic	hor	iza	ente	ما	loa	٦,	Par	alle	= 1 -	to .	مد	11:			
	5.	pport	rat	wa	()	en	ds	on	١٧.	,	(Do	res	٠١.	44.	12	- دا	- 14	717
	(2)#	8 5	crew	5 .	_	(2)	-16	41	bs =	= 3	28	165	>	47	175	0	. K.
			1			-												
						-												
			-		-	-												
			1															
						-												

