O. Hydrologic Modeling Additional Supporting Information

APPENDIX O
 Hydrologic Modeling Additional Supporting Information

O1 - Updated HH/LSM Assumptions and Results—Proposed WSIP
O2 - Updated HH/LSM Assumptions and Results—Modified WSIP Alt.
O3 - Updated HH/LSM Assumptions and Results—Phased WSIP Variant
O4 - Analysis of WSIP upon the San Joaquin River and the Sacramento-San Joaquin Delta

APPENDIX 01

Memorandum

Subject: Updated HH/LSM Assumptions and Results - Proposed WSIP
From: Daniel B. Steiner
Date:
March 20, 2008

1. Introduction

This memorandum summarizes assumptions for, and discusses the interpretation of, the Hetch Hetchy/Local Simulation Model (HH/LSM) results for the simulation of the Water System Improvement Program (WSIP or the proposed program). Table 1-1 and Table 1-2 summarize the program/setting characteristics and modeling assumptions, and the performance and hydrologic results, respectively, for the WSIP as they compare to the modeled existing setting (2005, with Calaveras Reservoir constrained by the California Division of Safety of Dams [DSOD] restrictions).

The hydrology under the proposed program is primarily discussed in terms of a comparison to the baseline condition presented in the Draft Program Environmental Impact Report, i.e., the simulated current (2005) operation of the San Francisco Public Utilities Commission (SFPUC) regional water system, assuming that the operation of Calaveras and Crystal Springs Reservoirs is constrained by DSOD restrictions. Primary hydrologic parameters such as projected water deliveries, reservoir storage, and stream flows are compared, and additional parameters that assist in identifying the causes of hydrologic changes are also described as needed.

APPENDIX O1

Table 1-1
Setting Characteristics and Modeling Assumptions (Part 1/3)

APPENDIX 01

Table 1-1
Setting Characteristics and Modeling Assumptions (Part 2/3)

APPENDIX 01

Table 1-1
Setting Characteristics and Modeling Assumptions (Part 3/3)

Assumptions and Characteristics of Setting and/or Program	Units	Baseline	Proposed WSIP
		Baseline Conditions ${ }^{1}$ - Calaveras Constrained	
Tuolumne River System Operational Parameters			
Hetch Hetchy Reservoir Operation			
Storage - Minimum/Maximum	TAF	26.1-360.4	26.1-360.4
1987 Stipulation Minimum Release Flows		Yes	Yes
1987 Stipulation Supplemental Release Flows		No	No
Cherry Reservoir Operation			
Storage - Minimum/Maximum Fall/Winter Operation Storage	TAF	$1.0-273.3$ 25.3 TAF winter buffer	$1.0-273.3$ 25.3 TAF winter buffer
Eleanor Reservoir Operation			
Storage - Minimum/Maximum Fall/Winter Operation Storage	TAF	$0.0-27.1$ Required Minimum Storage	$0.0-27.1$ Reqra Minimum Stor
New Don Pedro Water Bank Account			
Storage - Minimum/Maximum	TAF	$0.0-570.0$ Temporary storage up to 740 TAF during Apr - Sep	$0.0-570.0$ Temp stor up to 740 TAF during Apr - Sep
Conveyance			
San Joaquin Pipelines Maximum	MGD	290	313
San Joaquin Pipelines Minimum	MGD	70	70
San Joaquin Pipelines Flow Rate Changes		11 Stepwise	17 Stepwise
		Surrogate minimum changes by allowing only 7 changes in a year	Allow up to 7 changes in a year (surrogate)
San Joaquin Pipelines Maintenance		Cycle one pipeline out Nov - Mar each year (average remaining capacity rotation) maximum 210 MGD	Cyclic 5-year mantenance (see note)
TIDIMID Operational Parameters			Note: Cyclic 5-year maintenance, maximum and 131 MGD available all other months exc and 135 MGD available
Districts' Tuolumne Diversion ${ }^{17}$		Varies annually based on land use and water availability Annual average 875 TAF	Set equal to baseline conditions. SFPUC effects measured by the result of reducing inflow to DP and its effect upon La Grange releases to the TR
Tuolumne River La Grange Flow Releases			
Don Pedro, 1996 FERC VAMP - considered but not modeled ${ }^{18}$		$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$

APPENDIX 01

Table 1-2
Summary of Modeling Results (Part 1/2)

HH/LSM Simulation Results	Units	Baseline	Proposed WSIP		
		Baseline Conditions ${ }^{1}$ - Calaveras Constrained			
Design Drought Production \& Disposition ${ }^{19}$					
San Joaquin Pipeline Diversion	mGD	208.7	235.0		
Bay-Area Deliveries	mGd	218.3	248.9		
Added Groveland \& Coastside Delivery	MGD	2.6	3.6		
Local Reservoir Evaporation	MGD	10.7	12.5		
Inflow from ACDD	mGd	1.3	1.6		
Flow Recapture	mGd	0	5.3		
Local Reservoir Stream Release	MGD	0.6	5.4		
Desalination	mGd	0	0		
Westside Basin	mGd	0	5.6		
District Transfer to NDP Water Bank	MGD	,	24.7		
Local Storage - Begin	mG	53,854	77,310		
Local Storage - End	mg	18,403	18,495		
Study Average Production \& Disposition (1921-02) ${ }^{20}$					
Tuolumne River System					
Reservoirs					
Hetch Hetchy					
Inflow	AF	749,605	749,605		
River	AF	275,255	267,021		
Stream Minimum Release	AF	65,728	65,593		
Tunnel	AF	470,709	478,932		
Evaporation	${ }_{\text {AF }}$	3,893	3,869		
Inflow	AF	279,293	279,293		
Eleanor Gravity	AF	289	289		
Eleanor Pump	AF	118,251	118,274		
River	AF	41,636	41,439		
Stream Minimum Release	AF				
Tunnel	AF	352,692	352,915		
Evaporation	AF	3,505	3,501 239,309		
Reservoir	AF				
Eleanor ${ }_{\text {Inflow }}$	AF	169,617	169,617		
Eleanor Gravity	AF	289	289		
Eleanor Pump	AF	118,251	118,274		
River	AF	49,171	49,148		
Stream Minimum Release	${ }_{\text {AF }}$				
Evaporation	AF	1,906	1,906		
Reservoir	AF	22,191	22,191		
Don Pedro Reservoir					
Inflow	AF	1,587,517	1,560,828		
MID Diversion	${ }^{\text {AF }}$	302,054 573,164	302,055 573,168		
TID Diversion	AF	573,164	573,168		
LaGrange Total Stream	AF	668,876	644,009		
LaGrange Minimum Stream Release	${ }_{\text {AF }}$	221,477	221,477		
Total Evaporation	AF	43,493	42,604		
Reservoir	AF	1,472,337	1,434,872		
Water Bank Account					
Balance	${ }_{\text {AF }}$	514,299	516,733		
San Joaquin Pipelines					
Volume (MG)	MG	80,734	89,429		
Rate (MGD)	mGD	221	245		
Max Rate (MGD)	mGd	290	313		
Min Rate (MGD)	MGD	70	0		
East Bay System					
Reservoirs					
Calaveras					
Inflow	MG	12,368	12,368		
From ACDD	mg	1,316	1,730		
Stream	MG	3,660	4,167 1,538		
Stream Flow Recapture To SVWTP	MG $M \mathrm{MG}$	9,013	1,538 8,244		
To SVWTP To San Antonio	MG	9	8,244 0		
Evaporation	MG	1,023	1,704		
San Antonio ${ }^{\text {a }}$					
Inflow	MG	2,468	2,468		
From Calaveras/SJPL	MG	1,173	1,734 613		
Stream To SVWTP	MG	${ }_{1} 991$	${ }^{613}$		
To SVWTP Evaporation	MG	1,693 1,012	2,628 973		
Resevoir	mg	15,323	14,490		
Alameda Creek Diversion Dam					
Inflow	MG	4,197	4,197		
To Calaveras Reservoir	mg	1,316	1,730		
Alameda Creek Confluence					
Accretion	MG	625	625		
From ACDD	mg	2,881	2,467		
From Calaveras Dam	MG	3,660	4,167		
At Confluence	mg	7,167	7,259		
Treatment Plants					
SVWTP Total	MG	${ }^{13,662}$	15,738		
From Calaveras	MG	${ }^{9,013}$	8,244 2,628		
From San Antonio	MG	1,693	2,628		
From SJPL	mg	2,956	3,329		
From Recapture	MG	0	1,538		
SWWTP Total MGD	MGD	37	43		
SVWTP Max MGD	MGD	120	158		
SVWTP Min MGD	MGD	20	20		

APPENDIX 01

Table 1-2
Summary of Modeling Results (Part 2/2)

HH/LSM Simulation Results		Baseline	Proposed WSIP	
	Units	Baseline Conditions ${ }^{1}$ - Calaveras Constrained		
Peninsula System				
Reservoirs				
Crystal Springs				
Inflow	MG	3,722	3,722	
From San Andreas	MG	0	0	
From Pilarcitos and SJPL	MG	8,045	7,643	
Stream	MG	773	325	
Pump to San Andreas	MG	9,438	9,005	
Pump to Coastside	MG	247	591	
Evaporation	MG	1,323	1,490	
Reservoir	MG	16,360	18,621	
San Andreas				
Inflow	MG	1,428	1,428	
From other Streams	MG	9,954	9,590	
Stream	MG	0	0	
To HTWTP	MG	10,851	10,487	
Evaporation	MG	530	531	
Pilarcitos ${ }^{\text {R }}$				
Inflow		1,297	1,297	
To San Andreas	MG	516	584	
For Stone Diversion	MG	262	280	
Stream other than Diversion	MG	417	332	
Evaporation	MG	103	102	
Reservoir	MG	776	767	
Stone Dam				
Accretion blw Pilarcitos	MG	167	211	
Pilarcitos non-diversion Release	MG	417	332	
Pilarcitos Release for Diversions	MG	584	543	
Diversion to Coastside	MG	167	211	
Diversion to Crystal Springs	MG	142	180	
Spill past Stone	MG	860	695	
Treatment Plants				
HTWTP Total	MG	10,851	10,487	
HTWTP Total MGD	MGD	30	29	
HTWTP Max MGD	MGD	149	106	
HTWTP Min MGD	MGD	20	20	
Other Facilites				
Westside Basin Net	MG	0	11	
Desalination Input	MG	0	0	
Additional Information				
Total Local Reservoir Stream Release	MG	5,842	5,437	
Total Local Reservoir Stream Evaporation	MG	3,991	4,800	
Deliveries				
In-City	MG	29,589	26,686	
South Bay	MG	43,106	52,906	
Crystal Springs	MG	15,120	16,931	
San Andreas	MG	5,400	6,604	
Coastside	MG	675	1,082	
Groveland	MG	365	365	
Total Deliveries	MG	94,255	104,574	
Total Deliveries	MGD	258	287	
Storage				
Total Local Storage Begin	MG	49,849	71,363	
Total Local Storage End	MG	43,129	65,197	
Residual Difference during 82-year Simulation	MGD	0.22	0.21	
Westside Storage Begin	MG	0	23,474	
Westside Storage End	MG	0	24,363	
Residual Difference during 82-year Simulation	MGD	0.00	-0.03	

Notes for Table 1-1 and Table 1-2

1. Baseline condition represents the existing conditions at the time of Notice of Preparation publication in September 2006. This is the baseline used to assess WSIP program impacts and impact significance. This setting is indicative of DSOD restrictions on Calaveras and Crystal Springs Reservoirs.
2. N / A
3. N / A
4. The time horizon for the setting of the scenario. The baseline condition scenario is depicted for recent conditions, while the proposed WSIP, variants, and alternatives are depicted for the future at full buildout and implementation (i.e., conditions in the year 2030).
5. HH/LSM simulation study name.
6. The customer purchase request (demand) information is based on the demand and request studies prepared by the SFPUC in coordination with the wholesale customers. This demand on the regional water system includes both the SFPUC retail customers and wholesale customers. The current (2005) average annual demand is 265 mgd and the projected 2030 average annual demand is 300 mgd , assuming the SFPUC adopts the updated wholesale customer purchase requests as part of renewing the Master Sales Agreement with these customers (due in 2009).
7. Certain scenarios include development of additional water supply from a combination of recycled water projects, groundwater projects, and conservation, utilized every year and not subject to reduction during drought.
8. The average annual demand for supplies from the combination of SFPUC local watershed, Tuolumne River, and programs not included in the regional water conservation, recycling, and groundwater programs shown.
9. Modeled results for SFPUC deliveries, with supplies added for regional water conservation, recycling, and groundwater programs. Total deliveries and supply will be less than full customer purchase requests due to rationing in some years.
10. Shows only the features that affect hydrologic results of the system operation simulations. Additional projects are included in the WSIP.
11. Illustrates the frequency and severity of water supply action or the severity of systemwide rationing. Only years when a variable water supply component is implemented or rationing occurs are shown. "DD" illustrates the shortage results for years included in the prospective drought period of the SFPUC design drought. These years contribute to establishing system operation protocols but are not included in the hydrologic assessment analyses.
12. Rationing policy cap: The SFPUC WSIP level of service goal is to maintain rationing on the regional system at no more than 20% during any one year of the drought. Some alternatives do not achieve this level of service goal. Performance is indicated for the Design Drought ("DD") sequence and for the "Historical" hydrologic sequence.
13. Water supply elements develop water in different amounts from year-to-year, and in some instances only develop water during dry years. This information is provided to illustrate a comparison between local watershed supplies, Tuolumne River supplies, and other identifiable water supplies used to meet system purchase requests. Values are stated in units of average annual quantities during the simulated historical sequence.
14. Results from HH/LSM analysis of each scenario. Values represent the average annual production of each element of supply during the design drought period.
15. Simplified calculation of system deliveries during the SFPUC design drought. The value represents the application of systemwide shortages to the demand level being met with SFPUC local watershed, Tuolumne River, and other developed supplies, and does not include supplies from regional water conservation, recycled water, or groundwater projects. Average value may be slightly misstated (up to 3 mgd) due to metric of analysis that does not account for differences in residual storage between studies. "Nominal" Firm Yield represents the yield of each scenario after adjustment for minor residual storage differences.
16. Supplemental releases from Calaveras Reservoir for fisheries (1997 CDFG MOU) of up to 6,300 acre-feet per year and the Alameda Creek recapture facility project are tied to implementation of the Calaveras Dam Replacement project (SV-2). When the dam is replaced and capacity restored, the flow release and recapture will both occur. The release requirement is based on supplementing other occurring flows below Calaveras Reservoir, sometimes not requiring the full 6,300 acre-feet.
17. SFPUC actions are assumed to not change MID/TID diversions so as to isolate and possibly overstate the WSIP's effects on the Tuolumne River below La Grange Dam. The Districts' diversions are assumed to be constant among the scenarios to provide comparable results of WSIP-alone effects. The exception is for the Modified WSIP Alternative, in which the MID/TID diversion is reduced by the amount of SFPUC transfer.
18. Participation in the San Joaquin River Agreement is assumed. Although the agreement expires after 2010, it is assumed that a subsequent similar agreement or requirement of the Districts will occur. HH/LSM does not explicitly model the Districts' participation in the agreement; however, their participation if modeled would result in only minor differences in results and would not change impact conclusions.

19. From HH/LSM results for modeling the SFPUC design drought period.

20. From HH/LSM results for modeling the system operations for the historical hydrologic period 1921-2002. Values indicate average annual quantities during simulated historical period.

APPENDIX O1

2. Proposed WSIP

The SFPUC proposes to adopt and implement the WSIP to increase the reliability of the regional water system. The WSIP is a program to implement the service goals and system performance objectives established by the SFPUC for the regional water system in the areas of water quality, seismic reliability, delivery reliability, and water supply through the year 2030.

The WSIP level of service objectives for water supply are to: (1) fully meet customer purchase requests in nondrought years through planning year 2030, estimated at 300 million gallons per day (mgd) average annual delivery; and (2) provide drought-year delivery with a maximum systemwide delivery reduction (rationing) of 20 percent in any one year of a drought. These objectives correspond to a required system firm yield of 256 mgd in 2030. System firm yield is defined as the average annual water delivery that can be sustained throughout an extended drought. The current firm yield of the system is 219 mgd under the current restricted operating conditions that limit storage levels in Calaveras and Crystal Springs Reservoirs.

During nondrought years, the SFPUC would serve the increased 35 mgd in purchase requests through a combination of conservation, water recycling, groundwater supply programs, increased diversions from the Tuolumne River, and greater utilization of Bay Area watershed supplies associated with the restoration of operational storage capacity (primarily in Calaveras Reservoir). The SFPUC would implement conservation, water recycling, and groundwater supply programs in the SFPUC retail service area to achieve the equivalent of 10 mgd of supply per year, in all years. These programs would be in addition to demand management and conservation measures already accounted for in the 2030 purchase requests for the retail service area.

In most years, the SFPUC could serve the projected 2030 water purchases of 300 mgd with its existing sources of water supply; however, these sources alone have not allowed for full water deliveries during past droughts, and they would be insufficient during future droughts as purchase requests increase. The SFPUC proposes to serve this 2030 need for increased system firm yield (i.e., water supply during a drought scenario) with a combination of conservation, water recycling, and groundwater programs in the SFPUC retail service area; water transfers (29,350 acre-feet per year) from the Turlock Irrigation District (TID) and Modesto Irrigation District (MID); a groundwater conjunctive-use program, incorporating the Westside Basin Groundwater Program; and restoration of reservoir operating capacity at Crystal Springs and Calaveras Reservoirs. Systemwide rationing is limited to no more than 20 percent in any year, with a firm yield of 256 mgd throughout an extended drought.

2.1 Water Deliveries and Drought Response Actions

With a current systemwide purchase request of approximately 265 mgd , the regional water system cannot provide full deliveries during all anticipated drought sequences. Drought response actions (delivery shortages) are necessary at the onset of a drought to provide a viable, albeit reduced, supply throughout the duration of a drought. Because the regional water system has limited current resources, rationing of the SFPUC supply by more than 20 percent may be required during an extended drought. With the proposed program, the purchase requests would increase from 265 mgd to 300 mgd , with 10 mgd of these requests satisfied by conservation, recycling, and groundwater programs in the city of San Francisco. In the future, the system would experience a net demand of 290 mgd . The additional net demand and increase in the water supply reliability of the regional water system would be served by the water supply programs described above. Table 1-1 compares the drought response actions for the proposed program and base (Calaveras constrained) settings. Figure 2.1-1 illustrates the drought response actions for the simulated 82-year historical period (1921-2002).

In Figure 2.1-1, years with bars showing a "1" or greater level of action indicate periods when a supplemental water supply action is initiated. In the WSIP setting, the action is the use of the Westside Basin Groundwater Program to supplement SFPUC water deliveries. The water transfer from MID/TID is also occurring during these periods. Action levels greater than "1" indicate the imposition of delivery shortages (rationing) to SFPUC customers.
Figure 2.1-1

APPENDIX 01

Drought Response Actions - WSIP and Base

In modeling parlance, there is no level 1 action in the base setting. Without supplemental resources, the existing system only has the delivery shortage measure available to cope with drought. This shortage measure is imposed during level 2 (10 percent) and level 3 (20 percent). These percentages of shortage are applied to both the WSIP and the base settings for these action levels. As evidenced in Figure 2.1-1, rationing would be required more frequently and with greater severity (level 2 and level 3 actions) in the base setting.

Figure 2.1-1 illustrates that, when compared to the base setting, the WSIP setting triggers the supplemental resource (Westside Basin Groundwater Program) at an early indication of drought, and during periods when in the base setting there were no supplemental resources available to the system. The utilization of the supplemental resource during these times results in the elimination or reduction, or at least a non-increase in the severity, of delivery shortage.

Although not illustrated in Figure 2.1-1, Table 1-1 shows the delivery shortages anticipated during the entire SFPUC design drought. Shortages during the design drought with the WSIP are maintained within the objective to limit the severity of shortage to no more than 20 percent. With the existing system (Calaveras and Crystal Springs Reservoirs constrained), the 20-percent-limitation (cap) objective cannot be achieved during the last 18 months of the design drought, and a 25 -percent shortage is applied. The system's yield in the base setting is 219 mgd .

The difference in water deliveries between the proposed program and the base settings is shown chronologically for the 82 -year simulation in Table 2.1-1. The differences all indicate an increase in deliveries due to an increase in the level of purchase requests, and an increase in the reliability of delivery. The annual (fiscal-year-based) increase of approximately 9.1 million gallons represents the basic increase in delivery associated with an increase in purchase requests from 265 mgd to 290 mgd . The years that show other levels of additional deliveries illustrate the increase in purchase requests and represent years when shortages are reduced in the WSIP setting compared to the base setting.

2.2 Diversions from Tuolumne River

The metric for illustrating the SFPUC diversions from the Tuolumne River Basin is the flow through the San Joaquin Pipeline (SJPL). Table 2.2-1 illustrates the difference in diversions to the SJPL between the proposed program and the base settings. Evident in the operation is the increase in summer diversions associated with an increase in the conveyance capacity of the SJPL. Regardless of an increase in purchase requests, the availability of increased conveyance capacity would increase diversions during the summer to retain storage in the Bay Area reservoirs, typically exercising the SJPL at its maximum capacity. The increase in purchase requests would require the utilization of the maximum capacity for a longer period into the fall. Generally, fewer diversions would occur during the late fall and early winter because of the lesser drawdown of the Bay Area reservoirs (requiring less replenishment), and because systematic maintenance within Hetch Hetchy facilities (lessening available conveyance capacity) would impair diversions in the WSIP setting. The increase in diversions during the winter and spring would

Table 2.1-1
Difference in Total System-wide Delivery (MG)

Difference in	Syst	de D	(M)								WSIP	Base		
Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul\|	Aug	Sep	WY Total	FY Total
1921	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1922	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1923	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1924	810	611	461	374	437	609	727	907	1,008	2,347	2,262	1,909	12,462	9,124
1925	1,627	1,198	894	695	869	1,278	1,584	1,935	1,008	1,145	1,095	940	14,269	17,607
1926	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,125	9,125
1927	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,125
1928	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1929	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1930	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,125	9,125
1931	810	611	461	374	437	609	727	907	1,008	2,009	1,947	1,710	11,610	9,125
1932	1,547	1,259	1,075	947	1,006	1,309	1,479	1,721	1,847	1,145	1,095	940	15,370	17,856
1933	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1934	810	611	461	374	437	609	727	907	1,008	2,347	2,262	1,909	12,462	9,124
1935	1,627	1,198	894	695	869	1,278	1,584	1,935	1,008	1,145	1,095	940	14,268	17,607
1936	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1937	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1938	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1939	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1940	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1941	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1942	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1943	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1944	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1945	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1946	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1947	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1948	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1949	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,125
1950	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1951	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,125
1952	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1953	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1954	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1955	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1956	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,125
1957	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1958	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1959	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1960	810	611	461	374	437	609	727	907	1,008	2,347	2,262	1,909	12,462	9,124
1961	1,627	1,198	894	695	869	1,278	1,584	1,935	2,150	2,009	1,947	1,710	17,896	18,749
1962	1,547	1,259	1,075	947	1,006	1,309	1,479	1,721	1,847	1,145	1,095	940	15,370	17,856
1963	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1964	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1965	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,125
1966	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1967	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1968	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1969	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1970	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1971	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1972	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1973	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,125
1974	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1975	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1976	810	611	461	374	437	609	727	907	1,008	2,347	2,262	1,909	12,462	9,124
1977	1,627	1,198	894	695	869	1,278	1,584	1,935	2,150	2,009	1,947	1,710	17,896	18,749
1978	1,547	1,259	1,075	947	1,006	1,309	1,479	1,721	-263	1,145	1,095	940	13,260	15,746
1979	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1980	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1981	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1982	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1983	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1984	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1985	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1986	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,125
1987	810	611	461	374	437	609	727	907	1,008	2,347	2,262	1,909	12,462	9,124
1988	1,627	1,198	894	695	869	1,278	1,584	1,935	2,150	2,009	1,947	1,710	17,896	18,749
1989	1,547	1,259	1,075	947	1,006	1,309	1,479	1,721	1,847	2,009	1,947	1,710	17,856	17,856
1990	1,547	1,259	1,075	947	1,006	1,309	1,479	1,721	1,847	885	845	733	14,654	17,856
1991	646	509	403	337	381	503	586	709	775	2,009	1,947	1,710	10,513	7,311
1992	1,547	1,259	1,075	947	1,006	1,309	1,479	1,721	1,847	885	845	733	14,654	17,856
1993	646	509	403	337	381	503	586	709	-1,335	1,145	1,095	940	5,917	5,201
1994	810	611	461	374	437	609	727	907	1,008	2,347	2,262	1,909	12,462	9,124
1995	1,627	1,198	894	695	869	1,278	727	907	1,008	1,145	1,095	940	12,383	15,721
1996	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1997	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1998	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
1999	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
2000	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
2001	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
2002	810	611	461	374	437	609	727	907	1,008	1,145	1,095	940	9,124	9,124
Avg (21-02)	920	699	536	439	509	707	831	1,024	1,054	1,290	1,237	1,062	10,307	10,307

Table 2.2-1
Difference in Total San Joaquin Pipeline (Acre-feet)

Difference in	San	quin P	ne (Ac	eet)							WSIP	Base		
Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total	FY Total
1921	0	-921	0	0	0	12,368	2,118	2,189	2,118	2,189	2,189	2,118	24,368	27,130
1922	952	1,841	-1,902	952	0	0	7,365	5,043	4,880	2,189	2,189	2,118	25,627	25,627
1923	0	-2,762	0	0	0	15,317	2,118	2,189	2,118	2,189	2,189	2,118	25,476	25,476
1924	-951	0	1,902	-952	-859	5,803	2,118	2,189	2,118	2,189	2,189	2,118	17,864	17,864
1925	2,189	-19,334	-19,979	5,803	17,272	11,512	2,118	2,189	2,118	2,189	2,189	2,118	10,384	10,384
1926	5,043	5,616	-7,088	5,803	9,452	15,317	4,880	2,189	2,118	2,189	2,189	2,118	49,826	49,826
1927	1,903	-921	0	4,757	0	6,659	2,762	2,189	2,118	2,189	2,189	2,118	25,963	25,963
1928	2,949	0	-2,331	3,805	4,297	5,708	4,603	2,189	2,118	2,189	2,189	2,118	29,834	29,834
1929	4,756	1,841	1,902	1,902	1,718	5,803	2,118	2,189	2,118	2,189	2,189	2,118	30,843	30,843
1930	2,189	-19,334	-19,979	5,803	9,538	11,512	2,118	2,189	2,118	2,189	2,189	2,118	2,650	2,650
1931	2,189	5,616	-7,088	5,803	5,242	5,803	2,118	2,189	2,118	2,189	2,189	6,721	35,089	30,486
1932	8,562	2,762	5,708	5,708	0	15,412	4,880	6,945	6,721	2,189	2,189	2,118	63,194	67,797
1933	-951	0	-7,088	7,611	6,875	5,803	2,118	2,189	2,118	2,189	2,189	2,118	25,171	25,171
1934	2,189	5,616	5,803	6,659	6,015	5,803	2,118	2,189	2,118	2,189	2,189	2,118	45,006	45,006
1935	5,043	-19,334	-19,979	19,122	17,272	10,560	9,483	7,897	7,642	2,189	2,189	2,118	44,202	44,202
1936	2,189	4,603	-7,088	7,611	0	15,317	2,118	2,189	2,118	2,189	2,189	2,118	35,553	35,553
1937	3,806	1,841	1,902	3,805	0	951	6,445	5,043	4,880	2,189	2,189	2,118	35,169	35,169
1938	1,903	0	0	5,708	0	0	5,524	5,043	4,880	2,189	2,189	2,118	29,554	29,554
1939	-1,902	-921	-2,855	2,854	2,578	5,803	2,118	2,189	2,118	2,189	2,189	2,118	18,478	18,478
1940	2,189	-19,334	-19,979	15,317	7,734	13,319	8,286	5,043	4,880	2,189	2,189	2,118	23,951	23,951
1941	-1,902	-921	0	0	0	0	0	952	921	2,189	2,189	2,118	5,546	5,546
1942	2,379	0	-1,142	0	0	2,663	5,524	2,854	2,762	2,189	2,189	2,118	21,536	21,536
1943	1,903	-921	-7,088	0	0	3,805	6,721	2,189	2,118	2,189	2,189	2,118	15,223	15,223
1944	1,902	-921	0	1,902	7,046	15,317	2,118	2,189	2,118	2,189	2,189	2,118	38,167	38,167
1945	-475	-19,334	-19,979	5,803	13,749	15,317	2,118	2,189	2,118	2,189	2,189	2,118	8,002	8,002
1946	5,043	1,841	0	0	0	10,560	2,118	2,189	2,118	2,189	2,189	2,118	30,365	30,365
1947	952	1,841	0	-952	3,437	10,560	2,118	2,189	2,118	2,189	2,189	2,118	28,759	28,759
1948	2,189	5,616	-7,088	4,756	2,578	5,803	2,118	2,189	2,118	2,189	2,189	2,118	26,775	26,775
1949	2,189	5,616	2,854	-952	-859	1,902	2,118	2,189	2,118	2,189	2,189	2,118	23,671	23,671
1950	3,805	-19,334	-19,979	16,459	16,413	5,803	2,118	2,189	2,118	2,189	2,189	2,118	16,088	16,088
1951	2,189	7,365	0	0	0	8,562	2,118	2,189	2,118	2,189	2,189	2,118	31,037	31,037
1952	2,949	0	1,712	0	0	0	9,206	2,189	2,118	2,189	2,189	2,118	24,670	24,670
1953	1,902	-921	0	0	0	15,317	2,118	2,189	2,118	2,189	2,189	2,118	29,219	29,219
1954	-1,807	0	0	2,854	5,328	10,560	2,118	2,189	2,118	2,189	2,189	2,118	29,856	29,856
1955	-951	-19,334	-15,222	16,459	14,866	5,803	2,118	2,189	2,118	2,189	2,189	2,118	14,542	14,542
1956	2,189	5,616	0	0	0	2,663	2,118	2,189	2,118	2,189	2,189	2,118	23,389	23,389
1957	2,949	0	1,902	3,805	7,046	10,560	2,118	2,189	2,118	2,189	2,189	2,118	39,183	39,183
1958	952	2,762	-7,088	9,514	0	0	0	1,047	1,013	2,189	2,189	2,118	14,696	14,696
1959	0	0	0	2,854	0	15,317	2,118	2,189	2,118	2,189	2,189	2,118	31,092	31,092
1960	2,189	-19,334	-19,979	5,803	10,398	5,803	2,118	2,189	2,118	2,189	2,189	2,118	-2,199	-2,199
1961	2,189	5,616	-7,088	5,803	9,538	5,803	2,118	2,189	2,118	2,189	5,043	9,483	45,001	34,782
1962	9,799	10,219	4,757	3,805	3,437	18,075	7,642	7,897	7,642	2,189	2,189	2,118	79,769	89,988
1963	2,949	1,841	-7,088	0	0	7,610	5,524	1,902	1,841	2,189	2,189	2,118	21,075	21,075
1964	2,189	0	0	7,611	6,875	5,803	2,118	2,189	2,118	2,189	2,189	2,118	35,399	35,399
1965	2,189	-19,334	-14,270	5,708	5,156	11,512	12,889	952	921	2,189	2,189	2,118	12,219	12,219
1966	2,949	-2,762	-1,379	9,704	8,765	5,803	2,118	2,189	2,118	2,189	2,189	2,118	36,001	36,001
1967	2,189	5,616	-2,855	0	0	0	6,445	0	0	2,189	2,189	2,118	17,891	17,891
1968	2,189	0	-7,088	8,562	7,734	5,803	2,118	2,189	2,118	2,189	2,189	2,118	30,121	30,121
1969	2,189	4,603	-952	0	0	951	7,642	2,189	2,118	2,189	2,189	2,118	25,236	25,236
1970	0	-19,334	-19,979	12,367	11,171	19,122	2,118	2,189	2,118	2,189	2,189	2,118	16,268	16,268
1971	2,379	-921	0	0	0	10,560	2,118	2,189	2,118	2,189	2,189	2,118	24,939	24,939
1972	2,189	5,616	0	-952	3,437	5,803	2,118	2,189	2,118	2,189	2,189	2,118	29,014	29,014
1973	2,189	5,616	-7,088	0	0	0	6,721	2,189	2,118	2,189	2,189	2,118	18,241	18,241
1974	1,902	0	0	0	0	10,464	4,603	5,043	4,880	2,189	2,189	2,118	33,388	33,388
1975	-1,902	-19,334	-19,979	11,512	5,156	3,805	8,286	5,043	4,880	2,189	2,189	2,118	3,963	3,963
1976	-1,902	-921	-7,088	0	0	5,803	2,118	2,189	2,118	2,189	2,189	2,118	8,813	8,813
1977	5,043	5,616	4,756	0	0	5,803	2,118	2,189	2,118	-4,756	-1,902	7,365	28,350	34,139
1978	7,611	-921	-2,854	5,708	5,156	10,464	12,152	5,803	5,616	2,189	2,189	2,118	55,231	49,442
1979	-2,854	0	1,902	2,854	0	11,416	2,118	2,189	2,118	2,189	2,189	2,118	26,239	26,239
1980	5,043	-19,334	-15,222	13,319	0	7,610	4,880	2,189	2,118	2,189	2,189	2,118	7,099	7,099
1981	1,902	0	-7,088	7,610	6,874	11,512	2,118	2,189	2,118	2,189	2,189	2,118	33,731	33,731
1982	2,189	-921		0	0	0	0	1,902	1,841	2,189	2,189	2,118	11,507	11,507
1983	1,047	-2,762	951	0	0	0	4,787	4,757	4,603	2,189	2,189	2,118	19,879	19,879
1984	952	-4,603	0	0	0	5,803	2,118	2,189	2,118	2,189	2,189	2,118	15,073	15,073
1985	2,189	-19,334	-19,979	10,560	9,538	5,803	2,118	2,189	2,118	2,189	2,189	2,118	1,698	1,698
1986	2,189	5,616	-7,088	5,803	3,437	7,610	7,365	5,043	4,880	2,189	2,189	2,118	41,351	41,351
1987	0	0	1,902	-952	-859	5,803	2,118	2,189	2,118	2,189	2,189	2,118	18,815	18,815
1988	5,043	5,616	-7,088	10,465	7,734	5,803	2,118	2,189	2,118	2,189	2,189	9,483	47,859	40,494
1989	4,756	1,841	4,757	2,854	2,578	5,803	2,118	5,043	4,880	5,043	3,806	7,365	50,844	48,491
1990	6,659	-19,334	-15,222	10,560	9,538	5,803	2,118	2,189	2,118	5,043	4,756	6,444	20,672	20,643
1991	3,805	-921	-2,331	0	0	10,465	4,880	2,854	2,762	2,189	3,805	1,841	29,349	37,757
1992	0	4,603	3,805	952	2,406	18,075	6,721	6,945	6,721	1,047	-1,902	1,841	51,214	58,063
1993	1,902	-921	-1,379	0	0	0	4,603	2,854	2,762	2,189	2,189	2,118	16,317	10,807
1994	-2,854	0	0	-952	10,312	5,803	2,118	2,189	2,118	2,189	2,189	2,118	25,230	25,230
1995	5,043	-19,334	-19,979	7,610	6,874	0	9,206	1,903	1,842	2,189	2,189	2,118	-339	-339
1996	1,902	0	-2,331	0	0	0	4,880	5,043	4,880	2,189	2,189	2,118	20,870	20,870
1997	1,903	0		0	0	10,465	2,118	2,189	2,118	2,189	2,189	2,118	25,289	25,289
1998	2,189	2,762	-7,088	0	0	951	11,048	3,901	3,775	2,189	2,189	4,880	26,796	24,034
1999	1,902	-921	0	6,659	0	8,562	9,206	2,189	2,118	2,189	2,189	2,118	36,211	38,973
2000	1,902	-19,334	-19,979	15,317	7,734	16,173	2,118	2,189	2,118	2,189	2,189	2,118	14,734	14,734
2001	3,806	2,762	-7,088	7,611	8,593	15,317	2,118	2,189	2,118	2,189	2,189	2,118	43,922	43,922
2002	952	0	-1,902	6,659	6,015	10,560	2,118	2,189	2,118	2,189	2,189	2,118	35,205	35,205
Avg (21-02)	2,106	-2,522	-4,852	4,307	3,833	7,532	3,864	2,797	2,706	2,160	2,195	2,561	26,687	26,720

APPENDIX O1

result from the need to replenish Bay Area reservoir storage after the maintenance period, serve increased purchase requests, and top off Bay Area reservoir storage prior to summer. The difference in SJPL diversions between the WSIP setting and the base setting is illustrated in Figure 2.2-1. The difference in average monthly diversions through the SJPL is shown by year type for the 82-year simulation period.

Table 2.2-2 illustrates the average monthly diversions through the SJPL, by year type, for the 82-year simulation period for the proposed program and the base settings. The table illustrates a trend of diverting less water from the Tuolumne River Basin in wetter years (as Bay Area reservoir watersheds provide more supply during those years) than in drier years.

Figure 2.2-1
SJPL Diversions - WSIP and Base-Calaveras Constrained

Table 2.2-2

Total San Joaquin Pipeline (Acre-feet)														
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total	FY Total
Wet	27,584	16,762	9,692	11,066	7,304	10,875	21,647	26,722	25,859	29,778	29,778	28,817	245,884	243,146
Above Normal	26,935	14,568	8,898	13,901	8,598	16,352	24,176	28,608	27,685	29,778	29,778	28,817	258,095	258,095
Normal	26,632	15,087	9,698	15,299	11,343	21,935	28,322	29,778	28,817	29,778	29,778	28,817	275,285	275,285
Below Normal	27,567	16,214	13,000	21,070	18,065	25,211	28,817	29,481	28,530	29,778	29,521	27,972	295,227	295,751
Dry	26,210	19,881	16,554	19,818	16,869	25,717	28,817	29,778	28,817	29,094	28,773	27,154	297,481	299,662
All Years	26,992	16,475	11,553	16,261	12,458	20,037	26,359	28,878	27,946	29,645	29,529	28,317	274,450	274,450
Total San Joaquin Pipeline (Acre-feet)														
(Average within Year Type - Grouped by Unimpaired Runoff at LaGrange) Base														
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total	FY Total
Wet	24,854	19,046	14,449	7,730	6,015	7,611	15,398	23,962	23,189	27,589	27,589	26,526	223,960	222,101
Above Normal	25,015	18,522	14,830	9,346	6,015	8,831	19,117	25,015	24,208	27,589	27,589	26,699	232,776	232,343
Normal	24,616	19,046	14,865	10,691	6,864	11,060	25,145	27,054	26,181	27,589	27,589	26,699	247,400	246,589
Below Normal	25,239	19,334	18,748	15,927	11,585	16,789	26,374	27,085	26,212	27,421	27,141	25,562	267,417	267,585
Dry	24,676	19,046	19,087	15,995	12,621	18,195	26,411	27,292	26,411	27,232	26,757	23,247	266,970	269,749
All Years	24,886	18,997	16,405	11,955	8,624	12,505	22,496	26,081	25,239	27,485	27,334	25,756	247,763	247,729
Difference in Total San Joaquin Pipeline (Acre-feet)														
(Average within Year Type - Grouped by Unimpaired Runoff at LaGrange) WSIP minus Base														
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total	FY Total
Wet	2,730	-2,285	-4,757	3,336	1,289	3,264	6,249	2,759	2,670	2,189	2,189	2,291	21,924	21,045
Above Normal	1,920	-3,954	-5,932	4,555	2,583	7,521	5,058	3,593	3,477	2,189	2,189	2,118	25,318	25,752
Normal	2,016	-3,959	-5,167	4,608	4,479	10,875	3,177	2,724	2,636	2,189	2,189	2,118	27,885	28,696
Below Normal	2,328	-3,120	-5,748	5,143	6,480	8,422	2,443	2,396	2,318	2,357	2,379	2,410	27,810	28,166
Dry	1,534	834	-2,533	3,823	4,248	7,521	2,406	2,486	2,406	1,862	2,016	3,907	30,511	29,913
All Years	2,106	-2,522	-4,852	4,307	3,833	7,532	3,864	2,797	2,706	2,160	2,195	2,561	26,687	26,720

2.3 Hetch Hetchy Reservoir and Releases

The additional draw of water for the additional deliveries occurring under the WSIP would generally result in an increase in draw from Hetch Hetchy Reservoir. Figure 2.3-1 illustrates a chronological trace of the simulation of Hetch Hetchy Reservoir storage and stream releases. Shown in Figure 2.3-1 are the results for the WSIP and base settings. Supplementing the Figure 2.3-1 representation of Hetch Hetchy Reservoir storage are Table 2.3-1, Hetch Hetchy Reservoir Storage (WSIP); Table 2.3-2, Hetch Hetchy Reservoir Storage (Base); and Table 2.3-3, Difference in Hetch Hetchy Reservoir Storage (WSIP minus Base).

Figure 2.3-1

Hetch Hetchy Reservoir Storage and Stream Release

Table 2.3-1
Hetch Hetchy Reservoir Storage (Acre-feet)

Table 2.3-2
Hetch Hetchy Reservoir Storage (Acre-feet)

Table 2.3-3
Difference in Hetch Hetchy Reservoir Storage (Acre-feet)

APPENDIX 01

Table 2.3-3 illustrates the difference in Hetch Hetchy Reservoir storage between the WSIP and base settings. Immediately after Hetch Hetchy Reservoir is filled (May or June, and then continuing through July), occasional differences in storage would occur, typically during a multi-year drought sequence or during an occasional single year when the reservoir does not fill. No reduction in yearly storage during that period would indicate that the same amount of water is being passed through the reservoir, regardless of the size of the conveyance capacity of the SJPL or the purchase requests. Water not diverted to the SJPL would return to the Tuolumne River at Kirkwood Powerhouse or Moccasin Reservoir and flow to Don Pedro Reservoir. In the late summer and early fall, storage levels would consistently be slightly different (lower) between the two settings, as additional diversions to the SJPL would retain Bay Area reservoir storage. The additional storage depletion would be somewhat ameliorated later in the fall and into winter as SJPL diversions are reduced because of lower Bay Area reservoir replenishment needs and conveyance system maintenance. The storage difference would become almost neutral in December with the WSIP setting because of the additional conveyance maintenance that would occur under the WSIP (which does not occur in the base setting). The maintenance impairs diversions to the SJPL. After December, storage in the reservoir associated with the WSIP setting again would be affected as replenishment of Bay Area reservoir storage resumes following the maintenance period and because of increased purchase requests. During drier years, there is a difference in storage between the WSIP and base settings; the WSIP setting results in a lower amount of storage in the reservoir by the end of April. Figure 2.3-2 illustrates the reservoir storage, averaged by year type, for the WSIP setting.
Figure 2.3-3 illustrates the average difference in storage, averaged by year type, for the two settings. Figure 2.3-4 illustrates the average monthly storage in Hetch Hetchy Reservoir for the 82-year simulation, and the range in storage for each month for the WSIP and base settings.

Figure 2.3-2

Figure 2.3-3

APPENDIX 01

Figure 2.3-4

The difference in storage in Hetch Hetchy Reservoir attributed to the diversion effects of the WSIP would manifest in differences in releases from O'Shaughnessy Dam to the stream. A different amount of available reservoir space in the winter and spring due to the WSIP would lead to a different ability to regulate inflow, thus potentially changing the amount of water released to the stream (the amount which is above minimum release requirements). Figure 2.3-1 illustrates the stream releases from O'Shaughnessy Dam for the WSIP and base settings. Supplementing Figure 2.3-1 are Table 2.3-4 and Table 2.3-5, which show the stream releases from O'Shaughnessy Dam for the WSIP and base settings. Table 2.3-6 illustrates the difference in stream releases between the WSIP and base settings. Compared to the base setting, the WSIP setting typically results in a lesser stream release, predominantly during May or June, which reflects the months when releases to the stream above minimum release requirements are made in anticipation of the reservoir being filled. In a few exceptions to this circumstance, an increase in releases to the stream occurs. Several of these exceptions are considered anomalous within modeling, the result of only shifting releases from one month to another. The other exceptions occur due to the balancing of reservoir storage among the Hetch Hetchy system and the Bay Area reservoirs. The decrease in releases is the result of a more depleted reservoir, which is the result of greater demands between the settings.

Table 2.3-6 illustrates the difference in stream releases between the WSIP and base settings, expressed in terms of a monthly volume (acre-feet) of flow. The difference in monthly flow below O'Shaughnessy Dam indicates a potential change in releases between the WSIP and base settings, ranging from a decrease of approximately 40,000 acre-feet to an increase of approximately 14,900 acre-feet. Considering the manner in which releases are determined and made to the stream, quantifying the effect of these changes in terms of average monthly flow (in cubic feet per second [cfs]) is not always meaningful. ${ }^{1}$ Assuming that a change in release volume equates to a delay or earlier initiation of releasing 6,000 acre-feet per day, the difference in stream releases from O'Shaughnessy Dam between the WSIP and base settings would range from delayed releases of up to 7 days to an addition of up to 2 days of release. Normally, the effect of a delay in release would not affect the year's peak stream release rate during a year.

[^0]Table 2.3-4
Hetch Hetchy Reservoir Release to Stream (Acre-feet)

Hetch Hetch	rvoir	ease	eam	re-feet)							WSIP		
Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
1921	3,074	2,975	2,460	3,074	6,916	7,624	8,271	10,084	98,913	7,686	7,686	5,316	164,079
1922	3,689	3,570	3,074	3,074	3,362	3,689	8,271	52,095	312,197	28,813	7,686	5,316	434,836
1923	3,689	3,570	3,074	3,074	3,362	3,689	7,676	39,054	95,231	16,928	7,686	5,316	192,349
1924	3,689	3,570	3,074	2,152	1,961	2,152	2,083	3,074	4,463	4,612	4,612	3,669	39,111
1925	2,152	2,083	2,152	3,074	3,362	3,689	8,271	56,758	149,864	11,621	7,686	5,316	256,028
1926	3,689	3,570	3,074	2,460	2,802	7,624	7,676	8,854	6,545	6,764	6,764	4,284	64,106
1927	3,074	2,975	2,460	3,074	3,362	3,689	4,463	118,928	238,640	13,543	7,686	5,316	407,210
1928	3,689	3,570	3,074	3,074	3,362	3,689	4,463	181,693	19,601	7,686	6,764	4,284	244,949
1929	3,074	2,975	2,460	2,460	1,961	2,152	2,083	4,919	38,258	6,764	6,764	4,284	78,154
1930	3,074	2,975	2,460	2,152	2,802	3,074	3,868	8,854	102,907	6,764	6,764	4,284	149,978
1931	3,074	2,975	2,460	2,152	2,802	2,152	2,083	3,074	4,463	4,612	4,612	3,669	38,128
1932	2,152	2,083	2,152	7,009	3,362	3,689	4,463	6,149	114,929	24,366	7,686	5,316	183,356
1933	3,689	3,570	3,074	2,152	2,802	2,152	2,083	3,074	17,729	6,764	6,764	4,284	58,137
1934	3,074	2,975	2,460	2,460	2,802	7,009	3,868	4,919	6,545	4,612	4,612	3,669	49,005
1935	2,152	2,083	2,152	7,009	6,916	7,624	4,463	10,084	136,065	7,686	7,686	5,316	199,236
1936	3,689	3,570	3,074	2,460	6,356	7,624	8,271	38,045	164,181	11,621	7,686	5,316	261,893
1937	3,689	3,570	3,074	3,074	6,916	7,624	8,271	10,084	154,062	7,686	7,686	5,316	221,052
1938	3,689	3,570	3,074	3,074	6,916	7,624	8,271	58,406	350,036	112,643	7,686	5,316	570,305
1939	3,689	3,570	3,074	2,460	2,802	3,074	3,868	41,832	6,545	6,764	6,764	4,284	88,726
1940	3,074	2,975	2,460	2,460	6,916	7,624	8,271	40,199	145,292	7,686	7,686	5,316	239,959
1941	3,689	3,570	3,074	7,009	6,916	7,624	8,271	10,084	200,571	67,763	7,686	5,316	331,573
1942	3,689	3,570	3,074	3,074	3,362	3,689	8,271	105,473	283,373	86,094	7,686	5,316	516,671
1943	3,689	3,570	3,074	3,074	3,362	3,689	23,247	197,709	148,920	18,174	7,686	5,316	421,510
1944	3,689	3,570	3,074	2,460	2,802	3,074	3,868	24,276	79,627	6,764	6,764	4,284	144,252
1945	3,074	2,975	2,460	3,074	6,916	7,624	8,271	10,084	184,630	31,926	7,686	5,316	274,036
1946	3,689	3,570	7,009	7,009	6,916	7,624	8,271	12,189	85,083	7,686	7,686	5,316	162,048
1947	3,689	3,570	3,074	3,074	3,362	3,689	4,463	86,043	10,353	6,764	6,764	4,284	139,129
1948	3,074	2,975	2,460	2,460	2,802	7,009	7,676	10,084	65,929	7,686	7,686	5,316	125,157
1949	3,689	3,570	3,074	2,460	2,802	7,009	7,676	8,854	10,353	6,764	6,764	4,284	67,299
1950	3,074	2,975	2,460	2,460	6,916	7,009	8,271	10,084	80,211	7,686	7,686	5,316	144,148
1951	3,689	34,010	42,960	7,009	6,916	7,624	8,271	10,084	87,710	7,686	7,686	5,316	228,961
1952	3,689	3,570	3,074	3,074	6,916	3,689	4,463	209,387	238,065	106,256	7,686	5,316	595,185
1953	3,689	3,570	3,074	3,074	3,362	3,074	3,868	26,262	168,768	29,365	7,686	5,316	261,108
1954	3,689	3,570	3,074	2,460	2,802	3,074	4,463	82,272	27,809	6,764	6,764	4,284	151,025
1955	3,074	2,975	2,460	3,074	3,362	7,009	7,676	8,854	6,545	6,764	6,764	4,284	62,841
1956	3,074	2,975	6,395	7,009	6,916	7,624	8,271	12,723	310,301	94,682	7,686	5,316	472,972
1957	3,689	3,570	3,074	2,152	1,961	2,152	3,868	17,650	183,319	7,686	6,764	4,284	240,169
1958	3,074	2,975	2,460	3,074	3,362	3,689	4,463	178,371	221,860	55,443	7,686	5,316	491,773
1959	3,689	3,570	3,074	2,152	1,961	7,009	7,676	8,854	6,545	6,764	6,764	4,284	62,342
1960	3,074	2,975	2,460	2,152	1,961	2,152	7,676	8,854	6,545	6,764	6,764	4,284	55,661
1961	3,074	2,975	2,460	3,074	2,802	2,152	3,868	4,919	6,545	4,612	4,612	3,669	44,762
1962	2,152	2,083	2,152	2,460	1,961	3,689	4,463	6,149	188,681	11,621	7,686	5,316	238,413
1963	3,689	3,570	3,074	2,152	2,802	3,689	4,463	118,067	203,340	36,602	7,686	5,316	394,450
1964	3,689	3,570	3,074	3,074	3,362	3,074	7,676	8,854	6,545	6,764	6,764	4,284	60,730
1965	3,074	2,975	6,395	7,009	6,916	7,624	8,271	10,084	126,387	61,519	7,686	5,316	253,256
1966	3,689	3,570	3,074	3,074	3,362	3,689	7,676	123,555	6,545	6,764	6,764	4,284	176,046
1967	3,074	2,975	2,460	3,074	3,362	3,689	4,463	146,692	270,669	185,208	7,686	5,316	638,668
1968	3,689	3,570	3,074	2,460	2,802	3,074	3,868	49,547	14,833	6,764	6,764	4,284	104,729
1969	3,074	2,975	2,460	3,074	3,362	3,689	12,681	344,502	300,076	115,876	7,686	5,316	804,771
1970	3,689	3,570	3,074	7,009	3,362	3,689	4,463	105,428	124,926	7,686	7,686	5,316	279,898
1971	3,689	3,570	3,074	3,074	3,362	3,689	4,463	52,458	177,149	11,621	7,686	5,316	279,151
1972	3,689	3,570	3,074	3,074	3,362	3,074	3,868	10,254	57,109	6,764	6,764	4,284	108,886
1973	3,074	2,975	2,460	3,074	3,362	3,689	4,463	190,830	159,403	7,686	7,686	5,316	394,018
1974	3,689	3,570	3,074	3,074	3,362	3,689	4,463	201,034	194,704	11,621	7,686	5,316	445,282
1975	3,689	3,570	3,074	3,074	2,802	3,689	8,271	14,107	247,984	11,621	7,686	5,316	314,883
1976	3,689	3,570	3,074	3,074	1,961	2,152	2,083	3,074	4,463	4,612	4,612	3,669	40,033
1977	2,152	2,083	2,152	2,152	1,961	2,152	2,083	3,074	4,463	4,612	4,612	3,669	35,165
1978	2,152	2,083	2,152	3,074	3,362	3,689	4,463	6,149	298,570	132,949	7,686	5,316	471,645
1979	3,689	3,570	3,074	2,460	3,362	3,689	4,463	220,976	107,368	7,686	7,686	5,316	373,339
1980	3,689	3,570	3,074	3,074	6,916	3,689	8,271	133,323	235,879	148,920	7,686	5,316	563,407
1981	3,689	3,570	3,074	2,152	2,802	3,074	7,676	8,854	10,353	6,764	6,764	4,284	63,056
1982	3,074	2,975	2,460	3,074	6,916	3,689	26,103	228,913	254,131	108,434	7,686	5,316	652,771
1983	7,624	3,570	3,074	3,074	3,362	3,689	4,463	175,217	463,488	302,677	61,509	5,316	1,037,063
1984	3,689	7,378	7,009	7,009	6,916	7,624	4,463	113,013	130,916	11,621	7,686	5,316	312,640
1985	3,689	3,570	3,074	3,074	3,362	3,074	4,463	104,203	12,733	6,764	6,764	4,284	159,054
1986	3,074	2,975	2,460	3,074	3,362	7,624	17,050	228,842	263,786	12,678	7,686	5,316	557,927
1987	3,689	3,570	3,074	2,152	1,961	2,152	2,083	3,074	4,463	4,612	4,612	3,669	39,111
1988	2,152	2,083	2,152	3,074	3,362	3,074	2,083	4,919	6,545	4,612	4,612	3,669	42,337
1989	2,152	2,083	2,152	3,074	2,802	3,074	4,463	89,012	62,889	7,686	6,764	4,284	190,435
1990	3,074	2,975	2,460	2,460	2,802	3,074	2,083	3,074	4,463	4,612	4,612	3,669	39,358
1991	2,152	2,083	2,152	2,152	1,961	2,152	3,868	4,919	74,555	6,764	6,764	4,284	113,806
1992	3,074	2,975	2,460	2,460	2,802	3,074	3,868	3,074	4,463	4,612	4,612	3,669	41,143
1993	2,152	2,083	2,152	3,074	3,362	3,689	8,271	213,205	204,082	44,068	7,686	5,316	499,140
1994	3,689	3,570	3,074	2,460	1,961	2,152	2,083	3,074	4,463	4,612	4,612	3,669	39,419
1995	2,152	2,083	2,152	3,074	3,362	7,624	8,271	131,296	334,396	294,086	11,843	5,316	805,655
1996	3,689	3,570	3,074	2,460	3,362	7,624	8,271	190,622	169,121	11,621	7,686	5,316	416,416
1997	3,689	3,570	3,074	110,603	6,916	7,624	4,463	231,648	146,890	7,686	7,686	5,316	539,165
1998	3,689	3,570	3,074	2,460	3,362	3,689	4,463	64,194	312,909	217,820	7,686	5,316	632,232
1999	3,689	3,570	3,074	2,460	6,916	7,624	8,271	10,084	166,036	7,686	7,686	5,316	232,412
2000	3,689	3,570	3,074	2,152	3,362	3,689	4,463	136,496	97,677	7,686	7,686	5,316	278,860
2001	3,689	3,570	3,074	2,460	2,802	3,074	3,868	48,240	6,545	6,764	6,764	4,284	95,134
2002	3,074	2,975	2,460	3,074	3,362	3,689	4,463	91,804	64,932	7,686	6,764	4,284	198,567
Avg (21-02)	3,351	3,614	3,449	4,514	3,861	4,506	6,199	68,039	123,274	33,709	7,711	4,793	267,021

Table 2.3-5
Hetch Hetchy Reservoir Release to Stream (Acre-feet)

Hetch Het	rvoir	ease	eam	cre-feet)							Base		
Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
1921	3,074	2,975	2,460	3,074	6,916	7,624	8,271	10,084	104,064	7,686	7,686	5,316	169,230
1922	3,689	3,570	3,074	3,074	3,362	3,689	8,271	57,465	312,197	28,813	7,686	5,316	440,206
1923	3,689	3,570	3,074	3,074	3,362	3,689	7,676	55,903	95,231	16,928	7,686	5,316	209,198
1924	3,689	3,570	3,074	2,152	1,961	2,152	2,083	3,074	4,463	4,612	4,612	3,669	39,111
1925	2,152	2,083	2,152	3,074	3,362	3,689	8,271	67,753	149,864	11,621	7,686	5,316	267,023
1926	3,689	3,570	3,074	2,460	2,802	7,624	7,676	11,767	6,545	6,764	6,764	4,284	67,019
1927	3,074	2,975	2,460	3,074	3,362	3,689	4,463	144,018	238,640	13,543	7,686	5,316	432,300
1928	3,689	3,570	3,074	3,074	3,362	3,689	4,463	184,434	19,601	7,686	6,764	4,284	247,690
1929	3,074	2,975	2,460	2,460	1,961	2,152	2,083	4,919	52,130	6,764	6,764	4,284	92,026
1930	3,074	2,975	2,460	2,152	2,802	3,074	3,868	8,854	102,907	6,764	6,764	4,284	149,978
1931	3,074	2,975	2,460	2,152	2,802	2,152	2,083	3,074	4,463	4,612	4,612	3,669	38,128
1932	2,152	2,083	2,152	7,009	6,916	3,689	4,463	6,149	116,974	24,366	7,686	5,316	188,955
1933	3,689	3,570	3,074	2,152	2,802	2,152	2,083	3,074	28,182	6,764	6,764	4,284	68,590
1934	3,074	2,975	2,460	2,460	2,802	7,009	3,868	4,919	6,545	4,612	4,612	3,669	49,005
1935	2,152	2,083	2,152	7,009	6,916	3,689	4,463	10,084	137,701	7,686	7,686	5,316	196,937
1936	3,689	3,570	3,074	2,460	6,356	7,624	8,271	45,190	164,181	11,621	7,686	5,316	269,038
1937	3,689	3,570	3,074	3,074	6,916	7,624	8,271	12,743	159,632	7,686	7,686	5,316	229,281
1938	3,689	3,570	3,074	3,074	6,916	7,624	8,271	68,866	350,036	112,643	7,686	5,316	580,765
1939	3,689	3,570	3,074	2,460	2,802	3,074	7,676	37,787	6,545	6,764	6,764	4,284	88,489
1940	3,074	2,975	2,460	2,460	6,916	7,624	8,271	31,527	145,292	7,686	7,686	5,316	231,287
1941	3,689	3,570	3,074	7,009	6,916	7,624	8,271	10,084	201,819	67,763	7,686	5,316	332,821
1942	3,689	3,570	3,074	3,074	3,362	3,689	8,271	105,473	283,373	86,094	7,686	5,316	516,671
1943	3,689	3,570	3,074	3,074	3,362	3,689	23,247	197,709	148,920	18,174	7,686	5,316	421,510
1944	3,689	3,570	3,074	2,460	2,802	3,074	3,868	55,934	79,627	6,764	6,764	4,284	175,910
1945	3,074	2,975	2,460	3,074	6,916	7,624	8,271	10,084	172,351	31,926	7,686	5,316	261,757
1946	3,689	3,570	7,009	7,009	6,916	7,624	8,271	19,234	85,083	7,686	7,686	5,316	169,093
1947	3,689	3,570	3,074	3,074	3,362	3,689	4,463	110,484	10,353	6,764	6,764	4,284	163,570
1948	3,074	2,975	2,460	2,460	2,802	7,009	7,676	10,084	77,241	7,686	7,686	5,316	136,469
1949	3,689	3,570	3,074	2,460	2,802	7,009	7,676	8,854	10,353	6,764	6,764	4,284	67,299
1950	3,074	2,975	2,460	2,460	6,916	7,009	8,271	10,084	73,459	7,686	7,686	5,316	137,396
1951	3,689	41,299	42,960	7,009	6,916	7,624	8,271	10,084	95,720	7,686	7,686	5,316	244,260
1952	3,689	3,570	3,074	3,074	6,916	3,689	4,463	223,078	238,065	106,256	7,686	5,316	608,876
1953	3,689	3,570	3,074	3,074	3,362	3,074	3,868	28,311	168,768	29,365	7,686	5,316	263,157
1954	3,689	3,570	3,074	2,460	2,802	3,074	4,463	105,620	27,809	6,764	6,764	4,284	174,373
1955	3,074	2,975	2,460	3,074	3,362	7,009	7,676	8,854	6,545	6,764	6,764	4,284	62,841
1956	3,074	2,975	6,395	7,009	6,916	7,624	8,271	17,135	310,301	94,682	7,686	5,316	477,384
1957	3,689	3,570	3,074	2,152	1,961	2,152	3,868	50,333	183,319	7,686	6,764	4,284	272,852
1958	3,074	2,975	2,460	3,074	3,362	3,689	4,463	188,814	221,860	55,443	7,686	5,316	502,216
1959	3,689	3,570	3,074	2,152	1,961	7,009	7,676	8,854	6,545	6,764	6,764	4,284	62,342
1960	3,074	2,975	2,460	2,152	1,961	2,152	7,676	8,854	6,545	6,764	6,764	4,284	55,661
1961	3,074	2,975	2,460	3,074	2,802	2,152	3,868	4,919	6,545	4,612	4,612	3,669	44,762
1962	2,152	2,083	2,152	2,460	1,961	3,689	4,463	45,687	202,079	11,621	7,686	5,316	291,349
1963	3,689	3,570	3,074	2,152	2,802	3,689	4,463	133,252	203,340	36,602	7,686	5,316	409,635
1964	3,689	3,570	3,074	3,074	3,362	3,074	7,676	8,854	10,353	6,764	6,764	4,284	64,538
1965	3,074	2,975	6,395	7,009	6,916	7,624	8,271	10,084	111,487	61,519	7,686	5,316	238,356
1966	3,689	3,570	3,074	3,074	3,362	3,689	7,676	123,555	6,545	6,764	6,764	4,284	176,046
1967	3,074	2,975	2,460	3,074	3,362	3,689	4,463	159,921	270,669	185,208	7,686	5,316	651,897
1968	3,689	3,570	3,074	2,460	2,802	3,074	3,868	71,420	14,833	6,764	6,764	4,284	126,602
1969	3,074	2,975	2,460	3,074	3,362	3,689	12,681	344,502	300,076	115,876	7,686	5,316	804,771
1970	3,689	3,570	3,074	3,074	3,362	3,689	4,463	114,745	124,926	7,686	7,686	5,316	285,280
1971	3,689	3,570	3,074	3,074	3,362	3,689	4,463	71,223	177,149	11,621	7,686	5,316	297,916
1972	3,689	3,570	3,074	3,074	3,362	3,074	3,868	32,769	57,109	6,764	6,764	4,284	131,401
1973	3,074	2,975	2,460	3,074	3,362	3,689	4,463	204,754	159,403	7,686	7,686	5,316	407,942
1974	3,689	3,570	3,074	3,074	3,362	3,689	4,463	201,034	194,704	11,621	7,686	5,316	445,282
1975	3,689	3,570	3,074	3,074	2,802	3,689	8,271	10,084	243,813	11,621	7,686	5,316	306,689
1976	3,689	3,570	3,074	3,074	1,961	2,152	2,083	3,074	4,463	4,612	4,612	3,669	40,033
1977	2,152	2,083	2,152	2,152	1,961	2,152	2,083	3,074	4,463	4,612	4,612	3,669	35,165
1978	2,152	2,083	2,152	3,074	3,362	3,689	4,463	45,254	298,570	132,949	7,686	5,626	511,060
1979	3,689	3,570	3,074	2,460	3,362	3,689	4,463	220,976	107,368	7,686	7,686	5,316	373,339
1980	3,689	3,570	3,074	3,074	6,916	3,689	8,271	133,323	235,879	148,920	7,686	5,316	563,407
1981	3,689	3,570	3,074	2,152	2,802	3,074	7,676	15,457	20,663	6,764	6,764	4,284	79,969
1982	3,074	2,975	2,460	3,074	6,916	3,689	26,103	228,913	254,131	108,434	7,686	5,316	652,771
1983	7,624	3,570	3,074	3,074	3,362	3,689	4,463	180,307	463,488	302,677	61,509	5,316	1,042,153
1984	3,689	7,378	7,009	7,009	6,916	3,689	4,463	124,666	130,916	11,621	7,686	5,316	320,358
1985	3,689	3,570	3,074	3,074	3,362	3,074	4,463	99,040	12,733	6,764	6,764	4,284	153,891
1986	3,074	2,975	2,460	3,074	3,362	16,102	20,985	228,842	263,786	12,678	7,686	5,316	570,340
1987	3,689	3,570	3,074	2,152	1,961	2,152	2,083	3,074	4,463	4,612	4,612	3,669	39,111
1988	2,152	2,083	2,152	3,074	3,362	3,074	2,083	4,919	10,353	4,612	4,612	3,669	46,145
1989	2,152	2,083	2,152	3,074	2,802	3,074	4,463	122,056	62,889	7,686	6,764	4,284	223,479
1990	3,074	2,975	2,460	2,460	2,802	3,074	2,083	3,074	4,463	4,612	4,612	3,669	39,358
1991	2,152	2,083	2,152	2,152	1,961	2,152	3,868	4,919	104,230	6,764	6,764	4,284	143,481
1992	3,074	2,975	2,460	2,460	2,802	3,074	3,868	21,507	4,463	4,612	4,612	3,669	59,576
1993	2,152	2,083	2,152	3,074	3,362	3,689	8,271	213,205	204,082	44,068	7,686	5,316	499,140
1994	3,689	3,570	3,074	2,460	1,961	2,152	2,083	3,074	4,463	4,612	4,612	3,669	39,419
1995	2,152	2,083	2,152	3,074	3,362	7,624	8,271	131,296	334,396	294,086	11,843	5,316	805,655
1996	3,689	3,570	3,074	2,460	3,362	7,624	8,271	190,622	169,121	11,621	7,686	5,316	416,416
1997	3,689	3,570	3,074	116,811	6,916	7,624	4,463	231,648	146,890	7,686	7,686	5,316	545,373
1998	3,689	3,570	3,074	2,460	3,362	3,689	4,463	64,194	312,909	217,820	7,686	5,316	632,232
1999	3,689	3,570	3,074	2,460	6,916	7,624	8,271	18,453	168,986	7,686	7,686	5,316	243,731
2000	3,689	3,570	3,074	2,152	3,362	3,689	4,463	144,697	97,677	7,686	7,686	5,316	287,061
2001	3,689	3,570	3,074	2,460	2,802	3,074	3,868	87,834	6,545	6,764	6,764	4,284	134,728
2002	3,074	2,975	2,460	3,074	3,362	3,689	4,463	123,552	64,932	7,686	6,764	4,284	230,315
Avg (21-02)	3,351	3,703	3,449	4,542	3,904	4,514	6,294	74,969	124,312	33,709	7,711	4,797	275,255

APPENDIX O1

Table 2.3-6
Difference in Hetch Hetchy Reservoir Release to Stream (Acre-feet) WSIP minus Base

APPENDIX 01

2.4 Lake Lloyd and Lake Eleanor

Compared to the operation in the base setting, the operation of Lake Lloyd and Lake Eleanor are simulated to be only slightly different in the WSIP setting. Figure 2.4-1 illustrates a chronological trace of the simulation of Lake Lloyd storage and stream releases. Figure 2.4-1 shows the results for the WSIP and base settings. The operation resulting for the WSIP setting is essentially the same as for the base setting, except during the prolonged drought of 1987-1992. During this drought period, there is a greater draw from Hetch Hetchy Reservoir in the WSIP setting compared to the base setting. The additional draw of water reduces the amount of water released from Hetch Hetchy Reservoir to Don Pedro Reservoir in the WSIP setting, which, to satisfy MID/TID entitlements to inflow, is met with additional releases from Lake Lloyd.

Figure 2.4-2 illustrates an almost identical operation of Lake Eleanor between the WSIP and base settings. Any difference that occurs in the Lake Eleanor operation would be caused by a small change in operation at Lake Lloyd that would affect the operation of the Cherry-Eleanor Tunnel between the two watersheds. Any difference that occurs in the simulations is associated more with modeling discretion than with any substantive likely difference in operation.

Supplementing the Figure 2.4-1 representation of Lake Lloyd stream releases is Table 2.4-1, which illustrates the differences in stream releases between the WSIP and base settings. The one notable difference in operation for the 82-year simulation occurs during the year following the rare 1987-1992 drought sequence, when the additional draw from Lake Lloyd storage described above would require replenishment. In this one occurrence, the releases to the stream above the minimum release requirement that would occur in the base setting would not occur in the WSIP setting. Table 2.4-2 illustrates average releases by year type for the WSIP and base settings, and shows almost no difference in releases between the two settings.

2.5 Flow below the Tuolumne River and Cherry River Confluence

The flow that occurs below the confluence of the Tuolumne River and Cherry River is considered important to recreational activity (whitewater rafting) during the May-through-September period. To estimate the effect of the WSIP on the occurrence of flow at this location, HH/LSM monthly volumetric flow results were post-processed to reflect the daily and hourly shaping potential currently exercised by Hetch Hetchy operators to satisfy water and power objectives while accommodating the desires of recreational interests. Figure 2.5-1 and Figure 2.5-2 illustrate the controlled flow below Hetch Hetchy facilities below the confluence of the Tuolumne and Cherry Rivers, averaged by year type, for the WSIP and base settings. Illustrated are the combined flow elements of: (1) stream releases from O'Shaughnessy Dam, Lake Lloyd, and Lake Eleanor; (2) the return of Canyon Tunnel diversions through Kirkwood Powerhouse that exceed the Mountain Tunnel diversion; and (3) diversions through Holm Powerhouse. For this analysis, the monthly volumes of diversion through Holm Powerhouse have been shaped into a release of 4 hours per day for 6 days a week. The other flow elements represent the average daily flow rate associated with the monthly volume of flow. Figure 2.5-1 and Figure 2.5-2 illustrate that the HH/LSM operation protocols for reservoir operation incidentally result in approximately 1,000 cfs of flow below the confluence if Holm Powerhouse releases are shaped. This opportunity occurs in both the WSIP and base settings. The flow rates illustrated in this analysis do not reflect either the occasional shaping opportunities that occur with Kirkwood Powerhouse releases or the existence of unregulated flow that enters the streams below O'Shaughnessy Dam, Lake Lloyd, and Lake Eleanor; both of these factors would increase the illustrated flow rate. The difference in flow between the two settings that could occur during the concentrated period of flow is illustrated in Figure 2.5-3.

Figure 2.4-1
Lake Lloyd Storage and Stream Release

APPENDIX 01

Figure 2.4-2
Lake Eleanor Storage and Stream Release

APPENDIX 01

Table 2.4-1

Difference in	oyd	ase	m	feet)							WSIP	Base	
Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
1921	0	0	0	0	0	0	0	0	0	0	0	0	0
1922	0	0	0	0	0	0	0	0	0	0	0	0	0
1923	0	0	0	0	0	0	0	0	0	0	0	0	0
1924	0	0	0	0	0	0	0	0	0	0	0	0	0
1925	0	0	0	0	0	0	0	0	0	0	0	0	0
1926	0	0	0	0	0	0	0	0	0	0	0	0	0
1927	0	0	0	0	0	0	0	0	-3,924	0	0	0	-3,924
1928	0	0	0	0	0	0	0	0	0	0	0	0	0
1929	0	0	0	0	0	0	0	0	0	0	0	0	0
1930	0	0	0	0	0	0	0	0	0	0	0	0	0
1931	0	0	0	0	0	0	0	0	0	0	0	0	0
1932	0	0	0	0	0	0	0	0	0	0	0	0	0
1933	0	0	0	0	0	0	0	0	0	0	0	0	0
1934	0	0	0	0	0	0	0	0	0	0	0	0	0
1935	0	0	0	0	0	0	0	0	-8,042	0	0	0	-8,042
1936	0	0	0	0	0	0	0	0	0	0	0	0	0
1937	0	0	0	0	0	0	0	0	0	0	0	0	0
1938	0	0	0	0	0	0	0	0	0	0	0	0	0
1939	0	0	0	0	0	0	0	0	0	0	0	0	0
1940	0	0	0	0	0	0	0	3,357	0	0	0	0	3,357
1941	0	0	0	0	0	0	0	0	0	0	0	0	0
1942	0	0	0	0	0	0	0	0	0	0	0	0	0
1943	0	0	0	0	0	0	0	0	0	0	0	0	0
1944	0	0	0	0	0	0	0	0	0	0	0	0	0
1945	0	0	0	0	0	0	0	0	0	0	0	0	0
1946	0	0	0	0	0	0	0	0	0	0	0	0	0
1947	0	0	0	0	0	0	0	0	0	0	0	0	0
1948	0	0	0	0	0	0	0	0	0	0	0	0	0
1949	0	0	0	0	0	0	0	0	0	0	0	0	0
1950	0	0	0	0	0	0	0	0	0	0	0	0	0
1951	0	0	0	0	0	0	0	0	0	0	0	0	0
1952	0	0	0	0	0	0	0	0	0	0	0	0	0
1953	0	0	0	0	0	0	0	0	0	0	0	0	0
1954	0	0	0	0	0	0	0	0	0	0	0	0	0
1955	0	0	0	0	0	0	0	0	0	0	0	0	0
1956	0	0	0	0	0	0	0	0	0	0	0	0	0
1957	0	0	0	0	0	0	0	0	0	0	0	0	0
1958	0	0	0	0	0	0	0	0	0	0	0	0	0
1959	0	0	0	0	0	0	0	0	0	0	0	0	0
1960	0	0	0	0	0	0	0	0	0	0	0	0	0
1961	0	0	0	0	0	0	0	0	0	0	0	0	0
1962	0	0	0	0	0	0	0	0	0	0	0	0	0
1963	0	0	0	0	0	0	0	0	0	0	0	0	0
1964	0	0	0	0	0	0	0	0	0	0	0	0	0
1965	0	0	0	0	0	0	0	0	0	0	0	0	0
1966	0	0	0	0	0	0	0	0	0	0	0	0	0
1967	0	0	0	0	0	0	0	0	0	0	0	0	0
1968	0	0	0	0	0	0	0	0	0	0	0	0	0
1969	0	0	0	0	0	0	0	0	0	0	0	0	0
1970	0	0	0	0	0	0	0	0	0	0	0	0	0
1971	0	0	0	0	0	0	0	0	0	0	0	0	0
1972	0	0	0	0	0	0	0	0	0	0	0	0	0
1973	0	0	0	0	0	0	0	0	0	0	0	0	0
1974	0	0	0	0	0	0	0	0	0	0	0	0	0
1975	0	0	0	0	0	0	0	0	0	0	0	0	0
1976	0	0	0	0	0	0	0	0	0	0	0	0	0
1977	0	0	0	0	0	0	0	0	0	0	0	0	0
1978	0	0	0	0	0	0	0	0	0	0	0	0	0
1979	0	0	0	0	0	0	0	0	0	0	0	0	0
1980	0	0	0	0	0	0	0	0	0	0	0	0	0
1981	0	0	0	0	0	0	0	0	0	0	0	0	0
1982	0	0	-50	0	0	0	0	0	0	0	0	0	-50
1983	0	0	0	0	0	0	0	0	0	0	0	0	0
1984	0	0	0	0	0	0	0	0	0	0	0	0	0
1985	0	0	0	0	0	0	0	0	0	0	0	0	0
1986	0	0	0	0	9,733	0	0	0	0	0	0	0	9,733
1987	0	0	0	0	0	0	0	0	0	0	0	0	0
1988	0	0	0	0	0	0	0	0	0	0	0	0	0
1989	0	0	0	0	0	0	0	0	0	0	0	0	0
1990	0	0	0	0	0	0	0	1	0	0	0	0	1
1991	0	0	0	0	0	0	0	0	0	1	0	0	1
1992	0	0	0	0	0	0	0	0	0	0	0	0	0
1993	0	0	1	0	0	0	0	0	-17,192	0	0	0	-17,191
1994	0	0	0	0	0	0	0	0	0	0	0	0	0
1995	0	0	0	0	0	0	0	0	0	0	0	0	0
1996	0	0	0	0	0	0	0	0	0	0	0	0	0
1997	0	0	0	0	0	0	0	0	0	0	0	0	0
1998	0	0	0	0	0	0	0	0	0	0	0	0	0
1999	0	0	0	0	0	0	0	0	0	0	0	0	0
2000	0	0	0	0	0	0	0	0	0	0	0	0	0
2001	0	0	0	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0	0	0	0
Avg (21-02)	0	0	-1	0	119	0	0	41	-356	0	0	0	-197

APPENDIX 01

Table 2.4-2

Lake Lloyd Release to Stream (Acre-feet)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	334	653	8,224	6,566	1,362	1,319	298	17,483	62,931	22,325	953	922	123,370
Above Normal	307	4,282	1,525	307	870	307	298	10,285	26,807	993	953	922	47,857
Normal	307	298	307	953	278	307	298	6,734	9,633	953	953	922	21,943
Below Normal	307	298	307	307	278	307	485	2,383	2,551	953	953	922	10,051
Dry	307	298	307	307	278	307	298	307	298	953	953	922	5,535
All Years	312	1,193	2,104	1,654	612	505	337	7,412	20,303	5,131	953	922	41,439
Lake Lloyd Release to Stream (Acre-feet)													
(Average within	- Gr	d by Uni	ed Runc	LaGrang								Base	
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	334	653	8,227	6,566	754	1,319	298	17,483	64,005	22,325	953	922	123,839
Above Normal	307	4,282	1,525	307	870	307	298	10,088	27,511	993	953	922	48,363
Normal	307	298	307	953	278	307	298	6,734	9,633	953	953	922	21,943
Below Normal	307	298	307	307	278	307	485	2,383	2,551	953	953	922	10,051
Dry	307	298	307	307	278	307	298	307	298	953	953	922	5,535
All Years	312	1,193	2,105	1,654	494	505	337	7,371	20,659	5,131	953	922	41,636
Difference in Lake Lloyd Release to Stream (Acre-feet)													
(Average within	- Gr	by Uni	ed Runc	LaGrang							WSIP	Base	
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	-3	0	608	0	0	0	-1,075	0	0	0	-469
Above Normal	0	0	0	0	0	0	0	197	-704	0	0	0	-506
Normal	0	0	0	0	0	0	0	0	0	0	0	0	0
Below Normal	0	0	0	0	0	0	0	0	0	0	0	0	0
Dry	0	0	0	0		0	0	0	0	0	0	0	0
All Years	0	0	-1	0	119	0	0	41	-356	0	0	0	-197

Figure 2.5-1

Figure 2.5-2

APPENDIX 01

Figure 2.5-3

More detailed review of the 82-year simulation of operations indicates that in only one month of the simulation do circumstances in the WSIP setting result in the shaped flow crossing the threshold to below $1,000 \mathrm{cfs}$, compared to levels greater than $1,000 \mathrm{cfs}$ in the base setting. In both the WSIP and base settings, in some dry and critical years, circumstances could result in a shaped flow of less than 1,000 cfs; however, results indicate that the WSIP setting would rarely increase the frequency of such an occurrence.

2.6 Don Pedro Reservoir and La Grange Releases

A change in Don Pedro Reservoir operation is caused by changes in inflow to the reservoir. The changes in inflow to the reservoir are the result of net changes within the operation of the upstream SFPUC facilities, described previously, and other changes in SFPUC operations associated with diversions to the Holm, Kirkwood, and Moccasin Powerhouses. Figure 2.6-1 illustrates a chronological trace of the simulation of Don Pedro Reservoir storage and Tuolumne River stream releases from La Grange Dam. Figure 2.6-1 presents the results for the WSIP and base settings.

Supplementing the Figure 2.6-1 representation of Don Pedro Reservoir storage are Table 2.6-1, Don Pedro Reservoir Storage (WSIP); Table 2.6-2, Don Pedro Reservoir (Base); and Table 2.6-3, Difference in Don Pedro Reservoir Storage (WSIP minus Base). The results illustrate that, throughout many years, the storage in Don Pedro Reservoir associated with the WSIP setting would differ from the storage in the base setting, and that this difference would almost always be less storage. Compared to the base setting, the differences in storage (reductions) indicate that inflow to Don Pedro Reservoir would decrease due to greater SFPUC demands and SJPL diversions in the WSIP setting. The decreases in inflow typically occur from winter through early summer. Table 2.6-4 illustrates the difference in inflow to Don Pedro Reservoir between the WSIP and base settings. Generally, the difference is an annual amount of about 27,000 acre-feet, approximating the additional delivery of the SFPUC. The season of inflow reduction is associated with the direct increase in diversions to the SJPL and the replenishment operation of Hetch Hetchy Reservoir. Figure 2.6-2 illustrates the seasonal change in Don Pedro Reservoir inflow, averaged by year type.

Figure 2.6-1
Don Pedro Reservoir Storage and Release below La Grange Dam

Table 2.6-1
Don Pedro Reservoir Storage (Acre-feet)

Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1921	1,262,860	1,277,365	1,340,344	1,508,876	1,689,999	1,690,000	1,713,000	1,758,255	1,920,087	1,785,379	1,633,202	1,551,799
1922	1,466,449	1,451,643	1,475,936	1,496,100	1,682,686	1,690,000	1,713,000	1,965,236	2,030,000	1,950,094	1,790,026	1,700,016
1923	1,638,028	1,643,364	1,689,999	1,689,989	1,689,997	1,690,000	1,713,000	1,799,363	1,900,966	1,828,869	1,683,448	1,632,370
1924	1,563,169	1,547,842	1,533,824	1,515,415	1,506,005	1,417,560	1,338,399	1,262,605	1,162,134	1,052,503	951,855	904,167
1925	906,788	921,085	985,076	1,028,777	1,205,262	1,311,674	1,436,468	1,560,568	1,684,578	1,582,202	1,438,920	1,367,376
1926	1,304,106	1,296,082	1,296,519	1,290,435	1,361,093	1,400,064	1,518,241	1,532,438	1,430,226	1,287,212	1,162,635	1,099,288
1927	1,044,610	1,084,270	1,129,224	1,168,777	1,346,690	1,463,332	1,567,658	1,688,723	1,936,134	1,852,362	1,703,718	1,627,130
1928	1,606,224	1,637,560	1,672,026	1,675,150	1,689,999	1,690,000	1,701,151	1,877,285	1,835,437	1,667,682	1,522,481	1,445,074
1929	1,362,145	1,353,824	1,350,930	1,337,716	1,346,569	1,351,080	1,341,527	1,323,621	1,392,489	1,266,466	1,150,912	1,087,613
1930	1,032,080	1,016,460	1,051,972	1,071,954	1,112,838	1,138,506	1,107,377	1,098,218	1,186,818	1,067,154	960,515	908,251
1931	864,235	866,605	904,039	902,201	933,725	896,662	839,706	804,980	747,051	671,410	610,497	591,503
1932	565,821	560,723	704,485	844,787	1,084,372	1,221,695	1,205,745	1,259,030	1,378,752	1,327,642	1,189,590	1,113,456
1933	1,025,224	1,000,826	998,521	983,959	1,008,603	995,965	955,100	959,906	1,007,489	894,719	782,336	724,120
1934	667,461	656,295	676,788	711,356	777,968	868,739	854,724	813,053	786,448	712,923	652,109	634,358
1935	624,570	638,297	677,837	832,051	956,075	1,079,921	1,337,695	1,442,297	1,633,298	1,541,356	1,416,179	1,343,212
1936	1,311,194	1,303,236	1,297,699	1,351,659	1,689,999	1,690,000	1,713,000	1,808,939	2,003,094	1,900,592	1,747,881	1,665,690
1937	1,613,022	1,592,326	1,585,791	1,579,717	1,689,994	1,690,000	1,713,000	1,792,830	1,982,099	1,843,316	1,694,437	1,610,230
1938	1,536,751	1,528,196	1,689,998	1,689,992	1,689,987	1,690,000	1,690,000	1,730,000	2,025,000	1,959,369	1,790,073	1,700,032
1939	1,672,242	1,671,809	1,685,673	1,689,024	1,689,999	1,690,000	1,634,629	1,601,698	1,473,709	1,301,817	1,157,373	1,119,194
1940	1,077,628	1,070,702	1,134,704	1,288,559	1,565,488	1,690,000	1,713,000	1,808,008	1,950,520	1,780,688	1,627,700	1,539,737
1941	1,469,773	1,454,423	1,553,735	1,689,994	1,689,991	1,690,000	1,690,000	1,804,234	2,030,000	1,950,157	1,790,024	1,700,010
1942	1,641,462	1,634,171	1,689,999	1,689,982	1,689,995	1,690,000	1,713,000	1,765,000	2,027,000	1,950,170	1,790,025	1,700,004
1943	1,619,298	1,656,980	1,690,000	1,689,976	1,689,995	1,690,000	1,713,000	1,940,240	2,030,000	1,940,444	1,790,004	1,700,004
1944	1,627,652	1,614,506	1,602,762	1,595,713	1,659,696	1,690,000	1,654,802	1,700,608	1,738,836	1,608,117	1,463,726	1,386,992
1945	1,362,396	1,410,433	1,456,868	1,483,156	1,689,997	1,690,000	1,713,000	1,750,377	1,973,670	1,906,466	1,749,519	1,662,142
1946	1,664,336	1,690,000	1,689,996	1,689,984	1,689,995	1,690,000	1,713,000	1,726,331	1,786,301	1,618,009	1,459,654	1,373,770
1947	1,314,592	1,331,036	1,364,362	1,376,577	1,405,177	1,370,566	1,295,486	1,351,369	1,288,812	1,144,830	1,017,268	954,574
1948	958,700	959,989	998,610	997,725	983,836	1,013,678	1,114,286	1,251,048	1,420,232	1,377,867	1,303,272	1,271,554
1949	1,247,966	1,239,259	1,234,425	1,223,326	1,235,015	1,400,436	1,383,115	1,432,798	1,409,371	1,242,728	1,096,786	1,022,286
1950	944,784	935,019	938,337	962,506	1,119,822	1,253,320	1,285,258	1,291,998	1,375,323	1,221,712	1,078,645	1,020,719
1951	1,018,036	1,422,514	1,689,995	1,689,971	1,689,993	1,690,000	1,664,085	1,570,386	1,596,323	1,438,802	1,296,271	1,217,452
1952	1,176,472	1,184,189	1,305,781	1,533,995	1,689,998	1,690,000	1,690,000	1,895,000	2,030,000	1,951,049	1,790,051	1,700,027
1953	1,614,775	1,604,850	1,619,190	1,689,999	1,689,998	1,688,681	1,619,217	1,588,332	1,773,663	1,724,813	1,589,215	1,514,922
1954	1,449,795	1,449,008	1,452,649	1,459,444	1,505,884	1,611,838	1,643,837	1,773,541	1,769,428	1,605,391	1,456,830	1,379,013
1955	1,300,328	1,300,104	1,318,386	1,350,951	1,401,218	1,464,906	1,489,052	1,525,796	1,487,090	1,348,288	1,221,076	1,163,037
1956	1,100,763	1,099,427	1,651,474	1,689,947	1,689,993	1,690,000	1,713,000	1,804,698	2,030,000	1,950,170	1,790,030	1,700,025
1957	1,639,825	1,624,492	1,616,539	1,610,979	1,668,413	1,690,000	1,553,124	1,584,074	1,786,699	1,635,352	1,492,723	1,419,571
1958	1,403,575	1,396,361	1,409,069	1,432,024	1,578,593	1,690,000	1,690,000	1,910,000	2,030,000	1,950,170	1,790,046	1,700,029
1959	1,611,062	1,589,728	1,567,833	1,592,273	1,689,999	1,690,000	1,662,406	1,600,478	1,493,480	1,324,246	1,178,165	1,178,441
1960	1,101,196	1,090,401	1,113,627	1,113,311	1,220,539	1,228,588	1,240,002	1,245,830	1,168,185	1,034,178	923,226	874,650
1961	827,383	826,615	897,810	899,493	908,561	870,204	842,562	814,709	769,512	703,148	648,423	629,635
1962	604,125	599,069	626,802	630,729	817,825	938,956	931,539	835,624	1,048,335	953,860	814,699	742,797
1963	700,558	694,902	745,217	790,246	957,421	1,023,119	1,119,414	1,363,268	1,654,516	1,631,866	1,513,806	1,455,856
1964	1,437,657	1,487,272	1,502,934	1,521,014	1,535,522	1,502,343	1,443,836	1,438,577	1,397,068	1,238,632	1,101,362	1,031,330
1965	1,018,694	1,042,070	1,471,762	1,689,988	1,689,993	1,690,000	1,713,000	1,743,852	1,900,867	1,898,947	1,790,038	1,700,028
1966	1,615,736	1,690,000	1,689,998	1,689,996	1,689,998	1,690,000	1,670,732	1,742,447	1,620,676	1,452,534	1,306,169	1,236,095
1967	1,160,837	1,194,375	1,348,066	1,447,078	1,544,910	1,690,000	1,690,000	1,880,000	2,030,000	2,030,000	1,790,252	1,700,021
1968	1,619,820	1,607,624	1,605,760	1,605,959	1,668,870	1,690,000	1,614,396	1,614,311	1,547,133	1,375,977	1,237,984	1,160,815
1969	1,124,725	1,154,047	1,243,529	1,689,996	1,689,990	1,690,000	1,690,000	1,930,000	2,030,000	1,975,279	1,790,111	1,700,033
1970	1,676,114	1,681,553	1,689,999	1,689,952	1,689,996	1,690,000	1,649,691	1,718,076	1,804,962	1,670,839	1,531,070	1,453,473
1971	1,394,102	1,437,025	1,524,073	1,589,976	1,659,167	1,690,000	1,647,943	1,676,856	1,840,272	1,736,038	1,599,726	1,530,826
1972	1,469,268	1,477,826	1,521,421	1,571,887	1,625,342	1,603,292	1,501,630	1,475,950	1,480,830	1,319,081	1,185,074	1,119,002
1973	1,081,006	1,094,033	1,176,102	1,304,888	1,484,502	1,646,959	1,675,219	1,921,511	2,030,000	1,863,873	1,716,891	1,634,144
1974	1,625,114	1,690,000	1,689,998	1,689,983	1,689,998	1,690,000	1,717,600	1,964,185	2,030,000	1,943,894	1,790,018	1,700,018
1975	1,671,620	1,661,732	1,660,185	1,665,519	1,689,996	1,690,000	1,717,600	1,824,854	2,030,000	1,950,013	1,790,077	1,700,024
1976	1,690,000	1,690,000	1,690,000	1,664,706	1,649,459	1,519,032	1,432,156	1,326,070	1,216,796	1,085,092	998,502	968,734
1977	932,654	925,543	955,652	938,503	920,299	807,858	717,610	671,981	616,184	544,084	486,059	467,586
1978	447,583	445,345	497,628	642,718	811,604	1,050,470	1,227,230	1,356,274	1,761,000	1,841,159	1,704,419	1,692,926
1979	1,606,278	1,609,357	1,608,413	1,689,999	1,689,995	1,690,000	1,690,000	1,717,600	1,827,795	1,673,824	1,527,042	1,450,952
1980	1,419,903	1,422,622	1,442,656	1,689,977	1,689,987	1,690,000	1,717,600	1,890,400	1,960,200	1,950,171	1,790,057	1,700,035
1981	1,617,942	1,596,204	1,588,406	1,595,955	1,619,607	1,690,000	1,710,315	1,694,081	1,626,429	1,461,340	1,330,112	1,262,473
1982	1,253,640	1,360,563	1,511,306	1,689,997	1,689,988	1,690,000	1,717,600	1,876,400	2,002,900	1,954,717	1,790,097	1,700,116
1983	1,690,000	1,690,000	1,689,995	1,689,966	1,689,989	1,294,700	1,264,000	1,270,800	1,851,400	2,030,000	1,869,137	1,700,118
1984	1,666,919	1,690,000	1,689,992	1,689,972	1,689,993	1,690,000	1,614,072	1,682,328	1,778,205	1,646,266	1,496,949	1,414,071
1985	1,399,091	1,434,211	1,478,590	1,469,173	1,504,226	1,570,360	1,558,812	1,616,719	1,550,570	1,386,112	1,251,881	1,188,728
1986	1,162,153	1,183,366	1,254,950	1,319,946	1,689,994	1,690,000	1,717,600	1,888,300	2,001,400	1,917,776	1,770,749	1,700,004
1987	1,641,221	1,619,848	1,601,298	1,570,175	1,566,241	1,592,870	1,533,147	1,433,211	1,330,588	1,195,991	1,085,371	1,032,594
1988	1,010,460	1,009,573	1,045,756	1,099,567	1,155,125	1,128,364	1,103,870	1,063,204	1,011,973	943,381	884,236	862,821
1989	836,632	844,157	876,836	900,479	930,034	1,051,709	1,029,659	1,110,864	1,160,578	1,025,069	913,162	908,781
1990	935,547	934,238	954,290	956,979	989,562	968,936	944,775	965,169	990,902	924,588	852,141	815,058
1991	799,492	794,262	814,409	803,540	782,227	856,893	858,476	917,797	1,020,071	946,830	874,711	843,590
1992	844,030	841,586	863,738	868,291	931,612	990,953	1,044,352	1,043,659	967,160	874,930	761,589	698,367
1993	662,549	656,233	682,056	877,956	1,027,740	1,267,172	1,365,280	1,684,448	1,941,790	1,923,275	1,785,144	1,700,014
1994	1,627,176	1,612,969	1,599,152	1,589,196	1,599,258	1,567,682	1,531,904	1,523,687	1,478,913	1,356,482	1,256,718	1,211,217
1995	1,172,146	1,191,956	1,236,737	1,494,252	1,599,122	1,690,000	1,717,600	1,629,700	1,982,800	2,030,000	1,814,001	1,700,059
1996	1,608,079	1,583,093	1,604,410	1,672,573	1,689,990	1,690,000	1,717,600	2,002,400	2,030,000	1,930,383	1,782,384	1,700,010
1997	1,667,198	1,690,000	1,689,993	1,689,875	1,689,994	1,690,000	1,598,189	1,839,987	1,951,576	1,810,929	1,668,846	1,615,122
1998	1,533,848	1,527,463	1,528,868	1,690,000	1,689,989	1,690,000	1,717,600	1,714,000	1,987,500	2,030,000	1,790,242	1,700,022
1999	1,662,014	1,675,303	1,690,000	1,689,986	1,689,990	1,690,000	1,717,600	1,781,250	1,998,452	1,868,511	1,726,752	1,652,772
2000	1,566,486	1,554,834	1,539,188	1,615,107	1,689,994	1,690,000	1,717,600	1,981,851	2,030,000	1,864,407	1,719,364	1,644,682
2001	1,634,728	1,622,232	1,613,706	1,605,692	1,629,054	1,690,000	1,716,911	1,801,382	1,668,653	1,504,167	1,365,411	1,300,012
2002	1,238,260	1,249,893	1,323,366	1,378,790	1,430,954	1,481,487	1,466,303	1,583,557	1,606,470	1,443,430	1,305,249	1,232,624
Avg (21-02)	1,289,807	1,299,980	1,345,245	1,393,639	1,456,995	1,482,690	1,485,599	1,553,787	1,637,503	1,537,849	1,401,689	1,333,676

Table 2.6-2
Don Pedro Reservoir Storage (Acre-feet)

Table 2.6-3
Difference in Don Pedro Reservoir Storage (Acre-feet)

Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1921	0	0	0	0	0	0	0	-3,188	-10,433	-12,571	-12,516	-12,475
1922	-12,449	-12,443	-12,443	-12,446	-7,314	0	0	-11,174	0	-5	0	0
1923	0	0	0	0	0	0	0	-19,014	-21,065	-23,157	-23,056	-22,982
1924	-22,935	-22,924	-22,924	-22,931	-22,933	-22,924	-24,684	-29,519	-29,489	-29,439	-29,370	-29,309
1925	-29,247	-29,231	-29,234	-29,249	-29,253	-29,251	-32,912	-46,419	-48,378	-50,350	-50,122	-49,951
1926	-49,846	-49,818	-50,315	-50,330	-50,531	-49,936	-60,110	-70,803	-94,077	-93,648	-93,216	-92,904
1927	-92,711	-92,659	-87,618	-87,643	-87,650	-87,617	-87,534	-114,797	-93,866	-95,648	-86,302	-72,891
1928	-72,744	-52,440	-17,973	-14,850	1	0	-11,849	-16,583	-18,642	-18,562	-18,479	-18,418
1929	-18,380	-18,369	-18,370	-18,376	-18,377	-18,370	-18,352	-33,941	-48,965	-48,740	-48,519	-48,356
1930	-48,255	-48,228	-48,230	-48,244	-48,248	-48,230	-48,183	-48,546	-50,493	-50,264	-50,033	-49,858
1931	-49,748	-49,719	-49,721	-49,736	-49,739	-49,720	-49,669	-49,534	-49,357	-49,120	-48,891	-48,719
1932	-48,606	-48,575	-77,837	-89,136	-104,447	-123,055	-130,097	-137,473	-145,745	-147,267	-146,583	-146,090
1933	-145,787	-145,705	-145,711	-145,755	-145,766	-145,711	-150,023	-154,107	-167,558	-168,970	-168,157	-167,562
1934	-167,197	-167,099	-170,312	-168,869	-169,775	-172,288	-175,433	-185,869	-186,997	-186,104	-185,207	-184,556
1935	-184,158	-184,050	-184,058	-201,819	-218,063	-212,422	-222,877	-230,972	-248,071	-249,176	-248,066	-247,237
1936	-246,724	-246,586	-246,703	-246,692	9	0	0	-10,344	-12,425	-14,554	-14,491	-14,445
1937	-14,415	-14,407	-14,417	-14,422	,	0	0	-9,338	-19,419	-21,520	-21,425	-21,356
1938	-21,313	-21,300	0	0	0	0	0	0	0	-2,183	-5	0
1939	0	0	0	0	0	0	-15,779	-14,122	-16,188	-16,114	-16,041	-15,988
1940	-15,954	-15,945	-23,947	-22,233	-28,098	0	0	8,878	3,978	3,960	3,943	3,931
1941	3,923	3,920	3,310	-1	0	0	0	-1,370	0	-4	0	0
1942	0	0	0	1	0	0	0	0	0	0	0	0
1943	0	0	0	0	0	0	0	-2,185	0	-2,183	-4	0
1944	0	0	0	0	,	0	0	-33,804	-35,808	-37,838	-37,667	-37,541
1945	-37,462	-37,441	-37,442	-37,453	,	0	0	-433	9,714	7,488	7,455	7,432
1946	7,417	106	0	0	0	0	0	-10,228	-12,309	-12,256	-12,201	-12,159
1947	-12,134	-12,126	-12,127	-12,131	-12,131	-12,127	-12,114	-38,678	-40,656	-40,473	-40,287	-40,148
1948	-40,063	-40,039	-40,041	-40,053	-40,055	-44,367	-48,897	-53,095	-66,246	-68,046	-67,664	-67,392
1949	-67,232	-67,190	-67,191	-67,203	-67,207	-71,084	-75,364	-78,800	-88,087	-87,683	-87,286	-86,991
1950	-86,808	-86,758	-90,313	-87,678	-102,553	-106,396	-106,462	-107,067	-102,069	-102,984	-102,516	-102,171
1951	-101,957	-116,550	2	0	0	0	-3,151	-4,068	-14,932	-17,047	-16,969	-16,911
1952	-16,876	-16,868	-16,868	-21,355	0	0	0	0	0	-2,184	-5	0
1953	0	0	0	0	0	0	-20,783	-24,843	-26,877	-28,945	-28,819	-28,724
1954	-28,665	-28,648	-28,650	-28,658	-28,660	-28,650	-28,623	-54,058	-55,995	-55,755	-55,504	-55,316
1955	-55,200	-55,169	-55,172	-55,187	-55,192	-55,171	-56,972	-60,371	-69,233	-68,919	-68,597	-68,369
1956	-68,227	-68,189	-38,525	6	1	0	0	-7,229			0	0
1957	0	0	0	0	0	0	0	-34,827	-36,828	-38,853	-38,680	-38,551
1958	-38,471	-38,449	-38,450	-38,462	-38,465	0	0	0	0	0	0	0
1959	0	0	0	0	0	0	-5,335	-20,965	-20,895	-20,799	-20,704	-20,635
1960	-20,592	-20,580	-20,582	-20,587	-24,035	-26,731	-27,380	-25,335	-23,087	-22,983	-22,873	-22,791
1961	-22,742	-22,728	-31,324	-31,333	-31,336	-31,323	-31,291	-31,207	-31,095	-30,947	-30,795	-30,692
1962	-30,627	-30,610	-30,610	-30,620	-30,621	-30,610	-30,579	-129,058	-148,817	-150,321	-149,603	-149,073
1963	-148,750	-148,661	-140,742	-127,465	-148,735	-148,680	-148,537	-165,164	-166,447	-167,912	-167,172	-166,619
1964	-166,277	-166,186	-166,193	-166,240	-154,478	-154,422	-156,469	-168,455	-190,238	-189,371	-188,499	-187,867
1965	-187,478	-187,372	-179,977	25	0	0	0	1,543	15,495	13,244	24	0
1966	0	-	0	0	1	0	-8,994	-11,156	-13,235	-13,175	-13,114	-13,069
1967	-13,042	-13,035	-13,036	-13,039	-13,040	0	0	0		0	-5	0
1968	0	0		0	0	0	0	-23,586	-25,621	-25,505	-25,386	-25,302
1969	-25,249	-25,235	-25,236	3	0	0	0	0	0	-2,184	-5	0
1970	0	0	0	-4	0	0	0	-11,491	-13,568	-15,693	-15,623	-15,570
1971	-15,537	-15,529	-15,529	-15,534	-15,535	0	0	-20,599	-22,646	-24,730	-24,624	-24,542
1972	-24,492	-24,478	-24,480	-24,487	-24,489	-24,479	-24,457	-49,064	-51,012	-50,779	-50,543	-50,374
1973	-50,270	-50,241	-50,243	-50,258	-50,261	-43,041	-42,381	-58,368	0		0	0
1974	0	0				0	0	-5,036	0	-2,184	-5	0
1975	0	-	0	0	0	0	0	7,481	0	-4	0	0
1976	0	,	0	0	0	0	0	0	0	0	0	0
1977	0	0	8,218	3,004	-3	-3	-4	-4	-4	-4	-4	-4
1978	-4	-4	-4	-4	-4	-4	-4	-84,008	0	-2,183	-2,174	-2,477
1979	-3,566	-3,564	-3,565	0	0	0	0	0	-2,114	-2,105	-2,096	-2,088
1980	-2,085	-2,083	-2,083	-1	0	0	0	0	0	0	0	0
1981	0	0	0	0	0	0	-2,116	-10,892	-27,623	-27,500	-27,374	-27,279
1982	-27,222	-27,206	-27,207	4	0	0	0	0	0	-2,184	-9	0
1983		0	0	0	0	0	0	0	0	0	-2,183	0
1984	-3,065	0	0	0	0	0	-196	-14,019	-16,087	-18,202	-18,121	-18,061
1985	-18,022	-18,013	-18,013	-18,018	-18,020	-18,013	-17,996	-15,311	-17,374	-17,296	-17,214	-17,157
1986	-17,122	-17,112	-25,509	-29,178	0	0	0	0	0	-2,184	-2,174	-4
1987	-3	-3	-3	-4	-3	-3	-3	-3	-9,443	-9,400	-9,357	-9,326
1988	-9,305	-9,300	-9,301	-9,303	4,356	4,354	-1,227	-10,934	-46,885	-51,655	-51,407	-51,222
1989	-51,110	-51,080	-51,082	-51,098	-51,102	-51,083	-62,482	-99,279	-103,811	-103,341	-102,860	-102,498
1990	-102,277	-102,218	-102,223	-102,253	-102,261	-102,223	-102,121	-119,107	-112,974	-112,452	-111,911	-111,512
1991	-116,465	-116,396	-116,402	-120,253	-120,264	-120,217	-120,110	-140,137	-157,006	-154,266	-155,596	-155,057
1992	-154,722	-154,632	-154,639	-154,686	-154,699	-154,641	-137,570	-166,565	-166,028	-165,300	-164,542	-163,984
1993	-163,639	-163,539	-171,483	-180,798	-180,813	-186,849	-191,394	-193,764	-88,210	-26,861	-4,904	-8
1994	-7	-8	-8	-7	-7	-8	-8	-20,888	-22,931	-22,826	-22,720	-22,644
1995	-22,598	-22,584	-22,586	-22,592	-22,594	0	0	0	0	0	-2,184	-3
1996	-3	-3	-3	-3	0	0	0	0	0	-2,183	-2,174	-4
1997	-3	0	0	1	0	0	-12,576	-14,731	-16,798	-18,908	-18,826	-18,764
1998	-18,726	-18,715	-18,716	3	0	0	0	0	0	0	0	0
1999				0	0	0	0	-12,321	-17,171	-19,281	-19,198	-19,136
2000	-19,098	-19,087	-19,088	-19,093	1	0	0	-10,376	0	0	0	0
2001	0	0	0	1	0	0	0	-41,731	-43,496	-43,303	-43,106	-42,959
2002	-42,867	-42,843	-42,845	-42,857	-42,860	-42,845	-42,804	-75,937	-77,796	-77,450	-77,093	-76,828
Avg (21-02)	-39,746	-39,707	-37,753	-34,605	-30,552	-29,368	-31,048	-41,810	-41,627	-41,602	-41,115	-40,653

APPENDIX O1

Table 2.6-4
Difference in Don Pedro Reservoir Inflow (Acre-feet)

Differen	Pe	servo	low	feet)							WSIP	Base	
Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
1921	0	0	0	0	0	-13,402	-3,253	-3,191	-7,268	-2,188	0	0	-29,302
1922	0	0	0	0	0	0	-7,366	-11,189	-4,880	-2,188	0	0	-25,623
1923	0	0	0	0	0	0	-2,117	-19,037	-2,117	-2,188	0	0	-25,459
1924	0	0	0	0	0	0	-1,702	-4,834	0	0	0	0	-6,536
1925	0	0	0	0	0	0	-3,692	-13,608	-2,118	-2,188	0	0	-21,606
1926	0	0	-496	0	-197	576	-10,227	-10,859	-23,557	0	0	0	-44,760
1927	0	0	5,045	0	0	0	0	-27,513	-6,321	-2,188	0	0	-30,977
1928	0	0	0	0	0	0	-20,759	-4,770	-2,118	0	0	0	-27,647
1929	0	0	0	0	0	0	0	-15,658	-15,168	0	0	0	-30,826
1930	0	0	0	0	0	0	0	-487	-2,118	0	0	0	-2,605
1931	0	0	0	0	0	0	0	0	0	0	0	0	0
1932	0	0	-29,259	-11,274	-15,304	-18,651	-7,164	-7,727	-8,766	-2,188	0	0	-100,333
1933	0	0	0	0	0	0	-4,456	-4,485	-14,010	-2,188	0	0	-25,139
1934	0	0	-3,206	1,494	-892	-2,580	-3,320	-10,927	-1,802	0	0	0	-21,233
1935	0	0	0	-17,702	-16,228	5,562	-10,668	-8,677	-17,892	-2,188	0	0	-67,793
1936	0	0	-106	82	-329	-16,899	-3,635	-10,357	-2,118	-2,188	0	0	-35,550
1937	0	0	-9	-1	-1,778	-3,195	-8,513	-9,349	-10,129	-2,188	0	0	-35,162
1938	0	0	1,711	0	0	-38	-7,142	-17,015	-4,880	-2,188	0	0	-29,552
1939	0	0	0	0	0	0	-15,786	1,619	-2,118	0	0	0	-16,285
1940	0	0	-8,001	1,721	-5,863	-10,103	-5,679	8,890	-4,880	0	0	0	-23,915
1941	0	0	-610	0	-445	-421	-519	-1,372	-2,168	-2,188	0	0	-7,723
1942	0	0	0	-5,541	0	-2,664	-5,524	-2,854	-2,762	-2,188	0	0	-21,533
1943	0	0	0	0	0	-2,001	-6,721	-2,188	-2,118	-2,188	0	0	-15,216
1944	0	0	0	0	0	0	0	-33,846	-2,118	-2,188	0	0	-38,152
1945	0	0	0	0	0	-15,317	-203	-434	10,161	-2,188	0	0	-7,981
1946	0	0	0	0	0	-12,207	-3,612	-10,240	-2,118	0	0	0	-28,177
1947	0	0	0	0	0	0	0	-26,630	-2,118	0	0	0	-28,748
1948	0	0	0	0	0	-4,327	-4,613	-4,372	-13,430	-2,188	0	0	-28,930
1949	0	0	0	6	0	-3,923	-4,351	-3,634	-9,575	0	0	0	-21,477
1950	0	0	-3,551	2,662	-14,868	-3,881	-171	-886	4,635	-1,388	0	0	-17,448
1951	0	-14,654	0	0	0	0	-3,152	-925	-10,896	-2,189	0	0	-31,816
1952	0	0	0	-4,482	0	0	0	-15,879	-2,117	-2,188	0	0	-24,666
1953	0	0	0	0	0	0	-20,792	-4,118	-2,118	-2,188	0	0	-29,216
1954	0	0	0	0	0	0	0	-25,536	-2,118	0	0	0	-27,654
1955	0	0	0	0	0	0	-1,855	-3,549	-9,082	0	0	0	-14,486
1956	0	0	-7,403	0	0	-3,555	-3,068	-7,238	-2,117	-2,188	0	0	-25,569
1957	0	0	0	0	0	0	0	-34,871	-2,117	-2,188	0	0	-39,176
1958	0	0	0	0	0	0	0	-11,490	-1,013	-2,188	0	0	-14,691
1959	0	0	0	0	0	0	-5,337	-15,664	0	0	0	0	-21,001
1960	0	0	0	0	-3,446	-2,707	-674	1,977	2,165	0	0	0	-2,685
1961	0	0	-8,594	0	0	0	0	0	0	0	0	0	-8,594
1962	0	0	0	0	0	0	0	-98,696	-20,248	-2,188	0	0	-121,132
1963	0	0	7,926	13,317	-21,259	0	0	-17,039	-1,841	-2,188	0	0	-21,084
1964	0	0	0	0	0	0	-2,195	-12,402	-22,395	0	0	0	-36,992
1965	0	0	7,403	-5,708	-5,156	-10,711	-9,769	1,545	13,979	-2,188	-2,188	0	-12,793
1966	0	0	-1,152	0	-17,169	0	-8,997	-2,188	-2,118	0	0	0	-31,624
1967	0	0	0	0	0	-5,460	0	-12,427	0	-2,188	-2,188	0	-22,263
1968	0	0	0	0	0	0	0	-23,616	-2,117	0	0	0	-25,733
1969	0	0	0	0	-2,451	-10,837	-7,642	-2,188	-2,118	-2,188	0	0	-27,424
1970	0	0	0	26,592	-5,953	-21,074	0	-11,504	-2,118	-2,188	0	0	-16,245
1971	0	0	0	0	0	0	0	-20,625	-2,117	-2,188	0	0	-24,930
1972	0	0	0	0	0	0	0	-24,703	-2,117	0	0	0	-26,820
1973	0	0	0	0	0	0	0	-16,112	-2,117	0	0	0	-18,229
1974	0	0	0	-8,391	0	-10,465	-4,603	-5,043	-4,879	-2,188	0	0	-35,569
1975	0	0	0	0	0	0	-8,286	7,490	-947	-2,188	0	0	-3,931
1976	0	0	0	0	0	0	0	0	0	0	0	0	0
1977	0	0	8,218	-5,216	-3,007	-1	-1	0	0	0	0	0	-7
1978	0	0	0	0	0	0	0	-84,115	-5,616	-2,188	0	-310	-92,229
1979	-1,095	0	0	0	0	-16,218	-2,117	-2,188	-2,118	0	0	0	-23,736
1980	0	0	0	9,723	0	-7,610	-4,880	-2,188	-2,118	-2,188	0	0	-9,261
1981	0	0	0	0	0	0	-2,117	-8,792	-16,794	0	0	0	-27,703
1982	0	0	0	0	-11,554	0	0	-1,902	-1,841	-2,188	-2,188	-2,117	-21,790
1983	-1,047	2,762	-952	0	0	0	0	-9,542	-4,603	-2,188	-2,188	0	-17,758
1984	-3,068	4,603	0	0	0	3,935	-197	-13,841	-2,118	-2,188	0	0	-12,874
1985	0	0	0	0	0	0	0	2,643	-2,117		0	0	526
1986	0	0	-8,396	-3,661	12,066	-20,128	-11,300	-5,042	-4,880	-2,188	0	0	-43,529
1987	0	0	0	0	0	0	0	0	-9,457	0	0	0	-9,457
1988	0	0	0	0	13,660	0	-5,580	-9,724	-36,050	-5,001	0	0	-42,695
1989	0	0	0	0	0	0	-11,454	-37,007	-4,880	0	0	0	-53,341
1990	0	0	0	0	0	0	0	-17,279	5,728	0	0	0	-11,551
1991	-5,202	0	0	-3,816	-1	0	0	-20,361	-17,370	2,048	-2,045	0	-46,747
1992	0	0	0	0	0	0	16,950	-29,350	0	0	0	0	-12,400
1993	0	5	-7,936	-9,261	0	-6,104	-4,729	-2,854	-25,296	-2,188	0	0	-58,363
1994	0	0	0	0	0	0	0	-20,907	-2,118	0	0	0	-23,025
1995	0	0	0	0	0	13,327	-9,206	-1,903	-1,841	-2,188	-2,188	0	-3,999
1996	0	0	0	0	-1,690	0	-4,879	-5,042	-4,880	-2,188	0	0	-18,679
1997	0	0	0	-6,207	0	0	-12,582	-2,188	-2,118	-2,188	0	0	-25,283
1998	0	0	0	0	0	-3,118	-11,049	-3,900	-3,775	-2,188	0	0	-24,030
1999	0	0	0	0	0	-8,562	-10,982	-12,335	-4,900	-2,188	0	0	-38,967
2000	0	0	0	0	0	0	0	-10,389	-2,118	0	0	0	-12,507
2001	0	0	0	0	0	0	0	-41,781	-1,904	0	0	0	-43,685
2002	0	0	0	0	0	0	0	-33,284	-2,118	0	0	0	-35,402
Avg (21-02)	-127	-89	-602	-313	-1,242	-2,595	-3,557	-11,996	-4,753	-1,227	-158	-30	-26,689

APPENDIX O1

Figure 2.6-2

Figure 2.6-1 and Table 2.6-3 illustrate that, during drought sequences, the reduction in inflow to Don Pedro Reservoir can accumulate from year to year. Compared to the base setting, the WSIP would result in lower Don Pedro Reservoir storage during some part of most years, and more predominantly during multi-year drought periods. Figure 2.6-3 illustrates the Don Pedro Reservoir storage for the WSIP setting, averaged by year type. Figure 2.6-4 illustrates the difference in reservoir storage, averaged by year type, in comparing the WSIP and base-Calaveras constrained settings. Also shown is the average difference in storage for the two settings during the 82 -year simulation.

Table 2.6-3 illustrates that, in some years (approximately one-third of the years, i.e., the wettest of years), the storage in Don Pedro Reservoir would not be substantially different, because large inflows to the reservoir during these years would require the management of storage (release of flow above minimum stream requirements) to satisfy flood control requirements. During the other years, the reduction in storage could range from a single year's additional diversions by the SFPUC to over 245,000 acre-feet (1936) from the accumulation of several years of additional diversions by the SFPUC. For example, the greatest draw from reservoir storage occurs during the drought of 1976-1977 (during which the WSIP would not cause an incremental additional draw from storage), and the greatest difference in reservoir draw between the base and the WSIP settings occurs during the years of the 1928-1935 drought.

Figure 2.6-5 illustrates the average monthly storage in Don Pedro Reservoir for the 82-year simulation, and the range in storage for each month for the WSIP and base settings. The difference in storage in Don Pedro Reservoir attributed to the upstream effects of the WSIP would affect releases from La Grange Dam to the stream. A difference in the amount of available reservoir space in the winter and spring due to the WSIP would lead to a difference in the ability to regulate inflow, thus potentially changing the amount of water released to the stream that is above minimum release requirements. During periods when inflow differs and Don Pedro Reservoir is at maximum storage capacity within the flood control storage limitation, a change in inflow would directly manifest as a change in releases from La Grange Dam (a change in either more or less flow). Figure 2.6-1 illustrates the stream releases from La Grange Dam for the WSIP and base settings.

APPENDIX O1

Figure 2.6-3

Figure 2.6-4

Figure 2.6-5

APPENDIX 01

Supplementing Figure 2.6-1 are Table 2.6-5 and Table 2.6-6, which illustrate the releases to the Tuolumne River from La Grange Dam for the WSIP and base settings. Table $2.6-7$ shows the difference in stream releases between the WSIP and base settings. Consistent with the periods showing changes in Don Pedro Reservoir storage, stream releases following the drawdown periods would indicate a reduction. The additional depletion of reservoir storage would manifest as a reduction in subsequent releases below La Grange Dam to replenish reservoir storage. The same information shown in Table 2.6-7 is illustrated in Table 2.6-8, arranged in descending order based on the San Joaquin River Index. The differences in releases to the Tuolumne River from La Grange Dam would occur only when there would otherwise be releases in excess of minimum Federal Energy Regulatory Commission (FERC) flow requirements, typically during wetter years. Occasional minor reductions in releases would also occur during winter, when the direct diversion of additional water by the SFPUC would lead to a commensurate reduction in inflow to Don Pedro Reservoir. If Don Pedro Reservoir is passing inflow for flood control, a similar commensurate reduction in releases would occur. Table 2.6-7 illustrates the decrease in monthly flow below La Grange Dam that would occur, up to approximately 247,000 acre-feet in one month (February 1936). This reduction is associated with the additional replenishment of Don Pedro Reservoir caused by the additional diversions of the SFPUC during the drought of 1987-1992. The effects of the SFPUC diversions accumulate in Don Pedro Reservoir throughout the drought period. Using the assumption that a change in release volume equates to a delay or acceleration of releasing 6,000 acrefeet per day means that the difference in stream releases from La Grange Dam between the WSIP and the base settings would be a delay in releases above minimum FERC flow requirements for a period longer than a month. Normally, the delay in release would not affect the peak stream release rate during a year. However, infrequently (such as in 1993, which followed a lengthy six-year drought), the WSIP's effect on stream releases could lead to an elimination of all flow in excess of FERC requirements in the year. Such a reduction in flow would not be common and would occur only because of multi-year droughts.

Comparing the WSIP and base settings, Table 2.6-9 illustrates the releases to the Tuolumne River below La Grange Dam; their differences are provided in terms of monthly volumetric flow averaged within year types.

APPENDIX O1

Table 2.6-5
Total La Grange Release to River (Acre-feet)

APPENDIX O1

Table 2.6-6
Total La Grange Release to River (Acre-feet)

APPENDIX 01

Table 2.6-7
Difference in Total La Grange Release to River (Acre-feet)

Water Year	Oct	Nov-	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
1921	0	0	0	0	0	-13,402	-3,254	0	0	0	0	0	-16,656
1922	0	0	0	0	-5,134	-7,312	-7,365	0	-16,036	-2,183	-5	0	-38,035
1923	0	0	0	0	0	0	-2,118	0	0	0	0	0	-2,118
1924	0	0	0	0	0	0	0	0	0	0	0	0	0
1925	0	0	0	0	0	0	0	0	0	0	0	0	0
1926	0	0	0	0	0	0	0	0	0	0	0	0	0
1927	0	0	0	0	0	0	0	0	-26,907	0	-8,945	-13,156	-49,008
1928	0	-20,270	-34,469	-3,128	-14,851	1	-8,905	0	0	0	0	0	-81,622
1929	0	0	0	0	0	0	0	0	0	0	0	0	0
1930	0	0	0	0	0	0	0	0	0	0	0	0	0
1931	0	0	0	0	0	0	0	0	0	0	0	0	0
1932	0	0	0	0	0	0	0	0	0	0	0	0	0
1933	0	0	0	0	0	0	0	0	0	0	0	0	0
1934	0	0	0	0	0	0	0	0	0	0	0	0	0
1935	0	0	0	0	0	0	0	0	0	0	0	0	0
1936	0	0	0	0	-247,039	-16,890	-3,635	0	0	0	0	0	-267,564
1937	0	0	0	0	-16,200	-3,195	-8,513	0	0	0	0	0	-27,908
1938	0	0	-19,590	0	0	-39	-7,143	-17,014	-4,880	0	-2,173	-5	-50,844
1939	0	0	0	0	0	0	0	0	0	0	0	0	0
1940	0	0	0	0	0	-38,195	-5,678	0	0	0	0	0	-43,873
1941	0	0	0	3,311	-446	-422	-519	0	-3,536	-2,184	-5	0	-3,801
1942	0	0	0	-5,542	1	-2,664	-5,524	-2,854	-2,762	-2,188	0	0	-21,533
1943	0	0	0	0	0	-2,001	-6,721	0	-4,299	0	-2,174	-5	-15,200
1944	0	0	0	0	0	0	0	0	0	0	0	0	0
1945	0	0	0	0	-37,456	-15,315	-202	0	0	0	0	0	-52,973
1946	0	7,308	106	0	0	-12,208	-3,612	0	0	0	0	0	-8,406
1947	0	0	0	0	0	0	0	0	0	0	0	0	0
1948	0	0	0	0	0	0	0	0	0	0	0	0	0
1949	0	0	0	0	0	0	0	0	0	0	0	0	0
1950	0	0	0	0	0	0	0	0	0	0	0	0	0
1951	0	0	-116,554	3	0	0	0	0	0	0	0	0	-116,551
1952	0	0	0	0	-21,357	0	0	-15,879	-2,117	0	-2,174	-4	-41,531
1953	0	0	0	0	0	0	0	0	0	0	0	0	0
1954	0	0	0	0	0	0	0	0	0	0	0	0	0
1955	0	0	0	0	0	0	0	0	0	0	0	0	0
1956	0	0	-37,068	-38,536	5	-3,555	-3,068	0	-9,334	-2,188	0	0	-93,744
1957	0	0	0	0	0	0	0	0	0	0	0	0	0
1958	0	0	0	0	0	-38,458	0	-11,490	-1,013	-2,188	0	0	-53,149
1959	0	0	0	0	0	0	0	0	0	0	0	0	0
1960	0	0	0	0	0	0	0	0	0	0	0	0	0
1961	0	0	0	0	0	0	0	0	0	0	0	0	0
1962	0	0	0	0	0	0	0	0	0	0	0	0	0
1963	0	0	0	0	0	0	0	0	0	0	0	0	0
1964	0	0	0	0	-11,774	0	0	0	0	0	0	0	-11,774
1965	0	0	0	-185,736	-5,132	-10,710	-9,769	0	0	0	11,003	24	-200,320
1966	0	1	-1,152	0	-17,169	0	0	0	0	0	0	0	-18,320
1967	0	0	0	0	0	-18,498	0	-12,427	0	-2,188	-2,184	-5	-35,302
1968	0	0	0	0	0	0	0	0	0	0	0	0	0
1969	0	0	0	-25,244	-2,448	-10,837	-7,641	-2,188	-2,117	0	-2,174	-4	-52,653
1970	0	0	0	26,596	-5,957	-21,074	0	0	0	0	0	0	-435
1971	0	0	0	0	0	-15,532	0	0	0	0	0	0	-15,532
1972	0	0	0	0	0	0	0	0	0	0	0	0	0
1973	0	0	0	0	0	-7,204	-620	0	-60,390	0	0	0	-68,214
1974	0	0	0	-8,392	1	-10,465	-4,603	0	-9,907	0	-2,174	-5	-35,545
1975	0	0	0	0	0	0	-8,286	0	6,521	-2,183	-4	0	-3,952
1976	0	0	0	0	0	0	0	0	0	0	0	0	0
1977	0	0	0	0	0	0	0	0	0	0	0	0	0
1978	0	0	0	0	0	0	0	0	-89,483	0	0	0	-89,483
1979	0	0	0	-3,565	0	-16,219	-2,118	-2,188	0	0	0	0	-24,090
1980	0	0	0	7,641	-1	-7,611	-4,879	-2,188	-2,118	-2,188	0	0	-11,344
1981	0	0	0	0	0	0	0	0	0	0	0	0	0
1982	0	0	0	-27,215	-11,551	0	0	-1,903	-1,841	0	-4,358	-2,127	-48,995
1983	-1,046	2,762	-952	-1	0	0	0	-9,542	-4,603	-2,188	0	-2,180	-17,750
1984	0	1,539	0	0		3,936	0	0	0	0	0	0	5,475
1985	0	0	0	0			0	0	0	0	0	0	0
1986	0	0	0	0	-17,113	-20,127	-11,300	-5,042	-4,880	0	0	-2,167	-60,629
1987	0	0	0	0		0	0	0	0	0	0	0	0
1988	0	0	0	0	0	0	0	0	0	0	0	0	0
1989	0	0	0	0	0	0	0	0	0	0	0	0	0
1990	0	0	0	0	0	0	0	0	0	0	0	0	0
1991	0	0	0	0	0	0	0	0	0	0	0	0	0
1992	0	0	0	0	0	0	0	0	0	0	0	0	0
1993	0	0	0	0	0	0	0	0	-130,387	-63,291	-21,886	-4,889	-220,453
1994	0	0	0	0	0	0	0	0	0	0	0	0	0
1995	0	0	0	0	0	-9,263	-9,206	-1,903	-1,842	-2,188	0	-2,177	-26,579
1996	0	0	0	0	-1,694	0	-4,880	-5,042	-4,880	0	0	-2,167	-18,663
1997	0	-3	0	-6,208	1	0	0	0	0	0	0	0	-6,210
1998	0	0	0	-18,722	3	-3,119	-11,048	-3,900	-3,774	-2,188	0	0	-42,748
1999	0	0	0	0	0	-8,562	-10,982	0	0	0	0	0	-19,544
2000	0	0	0	0	-19,094	0	0	0	-12,476	0	0	0	-31,570
2001	0	0	0	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0	0	0	0
(21-02)	-13	-106	-2,557	-3,472	-5,298	-3,768	-1,849	-1,141	-4,793	-1,065	-454	-352	-24,868

APPENDIX O1

Table 2.6-8
Difference in Total La Grange Release to River (Acre-feet)

Matrix Data for				din	Index								
Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
1983	-1,046	2,762	-952	-1	0	0	0	-9,542	-4,603	-2,188	0	-2,180	-17,750
1969	0	0	0	-25,244	-2,448	-10,837	-7,641	-2,188	-2,117	0	-2,174	-4	-52,653
1995	0	0	0	0	0	-9,263	-9,206	-1,903	-1,842	-2,188	0	-2,177	-26,579
1938	0	0	-19,590	0	0	-39	-7,143	-17,014	-4,880	0	-2,173	-5	-50,844
1998	0	0	0	-18,722	3	-3,119	-11,048	-3,900	-3,774	-2,188	0	0	-42,748
1982	0	0	0	-27,215	-11,551	0	0	-1,903	-1,841	0	-4,358	-2,127	-48,995
1967	0	0	0	0	0	-18,498	0	-12,427	0	-2,188	-2,184	-5	-35,302
1952	0	0	0	0	-21,357	0	0	-15,879	-2,117	0	-2,174	-4	-41,531
1958	0	0	0	0	0	-38,458	0	-11,490	-1,013	-2,188	0	0	-53,149
1980	0	0	0	7,641	-1	-7,611	-4,879	-2,188	-2,118	-2,188	0	0	-11,344
1978	0	0	0	0	0	0	0	0	-89,483	0	0	0	-89,483
1922	0	0	0	0	-5,134	-7,312	-7,365	0	-16,036	-2,183	-5	0	-38,035
1956	0	0	-37,068	-38,536	5	-3,555	-3,068	0	-9,334	-2,188	0	0	-93,744
1942	0	0	0	-5,542	1	-2,664	-5,524	-2,854	-2,762	-2,188	0	0	-21,533
1941	0	0	0	3,311	-446	-422	-519	0	-3,536	-2,184	-5	0	-3,801
1986	0	0	0	0	-17,113	-20,127	-11,300	-5,042	-4,880	0	0	-2,167	-60,629
1993	0	0	0	0	0	0	0	0	-130,387	-63,291	-21,886	-4,889	-220,453
1997	0	-3	0	-6,208	1	0	0	0	0	0	0	0	-6,210
1996	0	0	0	0	-1,694	0	-4,880	-5,042	-4,880	0	0	-2,167	-18,663
1943	0	0	0	0	0	-2,001	-6,721	0	-4,299	0	-2,174	-5	-15,200
1937	0	0	0	0	-16,200	-3,195	-8,513	0	0	0	0	0	-27,908
1974	0	0	0	-8,392	1	-10,465	-4,603	0	-9,907	0	-2,174	-5	-35,545
1975	0	0	0	0	0	0	-8,286	0	6,521	-2,183	-4	0	-3,952
1965	0	0	0	-185,736	-5,132	-10,710	-9,769	0	0	0	11,003	24	-200,320
1936	0	0	0	0	-247,039	-16,890	-3,635	0	0	0	0	0	-267,564
1984	0	1,539	0	0	0	3,936	0	0	0	0	0	0	5,475
1979	0	0	0	-3,565	0	-16,219	-2,118	-2,188	0	0	0	0	-24,090
1945	0	0	0	0	-37,456	-15,315	-202	0	0	0	0	0	-52,973
1999	0	0	0	0	0	-8,562	-10,982	0	0	0	0	0	-19,544
1963	0	0	0	0	0	0	0	0	0	0	0	0	0
1927	0	0	0	0	0	0	0	0	-26,907	0	-8,945	-13,156	-49,008
1935	0	0	0	0	0	0	0	0	0	0	0	0	0
1946	0	7,308	106	0	0	-12,208	-3,612	0	0	0	0	0	-8,406
1973	0	0	0	0	0	-7,204	-620	0	-60,390	0	0	0	-68,214
1932	0	0	0	0	0	0	0	0	0	0	0	0	0
2000	0	0	0	0	-19,094	0	0	0	-12,476	0	0	0	-31,570
1940	0	0	0	0	0	-38,195	-5,678	0	0	0	0	0	-43,873
1923	0	0	0	0	0	0	-2,118	0	0	0	0	0	-2,118
1921	0	0	0	0	0	-13,402	-3,254	0	0	0	0	0	-16,656
1970	0	0	0	26,596	-5,957	-21,074	0	0	0	0	0	0	-435
1951	0	0	-116,554	3	0	0	0	0	0	0	0	0	-116,551
1962	0	0	0	0	0	0	0	0	0	0	0	0	0
1953	0	0	0	0	0	0	0	0	0	0	0	0	0
1957	0	0	0	0	0	0	0	0	0	0	0	0	0
1925	0	0	0	0	0	0	0	0	0	0	0	0	0
1971	0	0	0	0	0	-15,532	0	0	0	0	0	0	-15,532
1950	0	0	0	0	0	0	0	0	0	0	0	0	0
1944	0	0	0	0	0	0	0	0	0	0	0	0	0
1954	0	0	0	0	0	0	0	0	0	0	0	0	0
1948	0	0	0	0	0	0	0	0	0	0	0	0	0
1928	0	-20,270	-34,469	-3,128	-14,851	1	-8,905	0	0	0	0	0	-81,622
1949	0	0	0	0	0	0	0	0	0	0	0	0	0
1966	0	1	-1,152	0	-17,169	0	0	0	0	0	0	0	-18,320
1933	0	0	0	0	0	0	0	0	0	0	0	0	0
1981	0	0	0	0	0	0	0	0	0	0	0	0	0
1985	0	0	0	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0	0	0	0
1926	0	0	0	0	0	0	0	0	0	0	0	0	0
1955	0	0	0	0	0	0	0	0	0	0	0	0	0
1959	0	0	0	0	0	0	0	0	0	0	0	0	0
1968	0	0	0	0	0	0	0	0	0	0	0	0	0
1939	0	0	0	0	0	0	0	0	0	0	0	0	0
2001	0	0	0	0	0	0	0	0	0	0	0	0	0
1964	0	0	0	0	-11,774	0	0	0	0	0	0	0	-11,774
1947	0	0	0	0	0	0	0	0	0	0	0	0	0
1972	0	0	0	0	0	0	0	0	0	0	0	0	0
1994	0	0	0	0	0	0	0	0	0	0	0	0	0
1930	0	0	0	0	0	0	0	0	0	0	0	0	0
1929	0	0	0	0	0	0	0	0	0	0	0	0	0
1989	0	0	0	0	0	0	0	0	0	0	0	0	0
1991	0	0	0	0	0	0	0	0	0	0	0	0	0
1987	0	0	0	0	0	0	0	0	0	0	0	0	0
1960	0	0	0	0	0	0	0	0	0	0	0	0	0
1976	0	0	0	0	0	0	0	0	0	0	0	0	0
1992	0	0	0	0	0	0	0	0	0	0	0	0	0
1990	0	0	0	0	0	0	0	0	0	0	0	0	0
1988	0	0	0	0	0	0	0	0	0	0	0	0	0
1934	0	0	0	0	0	0	0	0	0	0	0	0	0
1924	0	0	0	0	0	0	0	0	0	0	0	0	0
1961	0	0	0	0	0	0	0	0	0	0	0	0	0
1931	0	0	0	0	0	0	0	0	0	0	0	0	0
1977	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 2.6-9

Total La Grange Release to River (Acre-feet) (Average within Year Type - Grouped by SJR Index Year Type)					Feb	Mar	Apr	May	Jun	Jul	Aug	$\begin{array}{r} \text { WSIP } \\ \text { Sep } \\ \hline \end{array}$	WY Total									
	Oct	Nov	Dec	Jan																		
Wet	23,400	21,274	46,524	114,653	173,074	256,125	198,288	189,097	194,963	106,979	51,787	37,222	1,413,386									
Above Normal	17,105	28,309	69,075	77,774	95,901	127,962	95,279	80,555	20,035	14,739	14,739	14,263	655,737									
Below Normal	17,484	14,199	22,701	17,789	25,120	41,604	58,393	55,751	4,463	4,612	4,612	4,463	271,190									
Dry	20,655	15,449	15,964	15,964	17,937	27,291	30,572	29,530	4,349	4,494	4,494	4,349	191,046									
Critical	13,260	11,611	12,560	11,644	10,648	11,644	21,061	20,600	2,975	3,074	3,074	2,975	125,127									
All Years	18,815	18,888	36,241	57,087	79,135	114,179	95,290	88,906	63,139	36,354	20,200	15,774	644,009									
Total La Grange Release to River (Acre-feet) (Average within Year Type - Grouped by SJR Index Year Type)																						
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total									
Wet	23,443	21,159	48,924	127,347	176,452	262,303	202,891	192,904	207,184	110,618	52,966	37,877	1,464,068									
Above Normal	17,105	27,789	75,925	76,419	114,110	136,500	97,174	80,683	25,904	14,739	15,265	15,037	696,650									
Below Normal	17,484	15,888	25,669	18,049	27,788	42,899	59,135	55,751	4,463	4,612	4,612	4,463	280,813									
Dry	20,655	15,449	15,964	15,964	18,842	27,291	30,572	29,530	4,349	4,494	4,494	4,349	191,951									
Critical	13,260	11,611	12,560	11,644	10,648	11,644	21,061	20,600	2,975	3,074	3,074	2,975	125,127									
All Years	18,828	18,994	38,798	60,559	84,433	117,947	97,139	90,047	67,933	37,419	20,654	16,126	668,876									
Difference in Total La Grange Release to River (Acre-feet) (Average within Year Type - Grouped by SJR Index Year Type)																						
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total									
Wet	-44	115	-2,400	-12,694	-3,378	-6,178	-4,603	-3,807	-12,220	-3,639	-1,180	-655	-50,682									
Above Normal	0	520	-6,850	1,355	-18,209	-8,537	-1,895	-129	-5,869	0	-526	-774	-40,913									
Below Normal	0	-1,689	-2,968	-261	-2,668	-1,294	-742	0	0	0	0	0	-9,623									
Dry	0	0	0	0	-906	0	0	0	0	0	0	0	-906									
Critical	0	0	0	0	0	0	0	0	0	0	0	0	0									
All Years	-13	-106	-2,557	-3,472	-5,298	-3,768	-1,849	-1,141	-4,793	-1,065	-454	-352	-24,868									

2.7 Calaveras and San Antonio Reservoirs, Alameda Creek, and Downstream

Compared to the base setting, Calaveras Reservoir operations would substantively change in the WSIP setting. With the restoration of Calaveras Reservoir operating capacity, the reservoir would operate with a larger storage capacity. Figure 2.7-1 illustrates a chronological trace of the simulation of Calaveras Reservoir storage and stream releases from Calaveras Dam. Shown in Figure 2.7-1 are the results for the WSIP and base settings.

The current operation of Calaveras Reservoir (base-Calaveras constrained setting) is modeled to be greatly constrained, to vary only within a limited storage range. Although a within-year cyclic operation occurs for the conservation of local watershed runoff, there is relatively little reservoir storage available for year-to-year carryover and multi-year drought use. In the WSIP setting, a greater within-year cyclic operation occurs, providing for a greater use of local watershed runoff. Also, during prolonged periods of drought (i.e., multiple years in duration), reservoir storage would be drawn to supplement runoff available to the regional system and other water supply resources. Figure 2.7-2 illustrates the average monthly storage in Calaveras Reservoir for the 82-year simulation, and the range in storage for each month for the WSIP and base settings.

APPENDIX O1

Figure 2.7-1

Calaveras Reservoir Storage and Stream Release

APPENDIX 01

Figure 2.7-2

In the WSIP setting (as compared to the base setting), there would be two categorical changes in releases to Calaveras Creek below Calaveras Dam: the addition of flows representing the flow objectives associated with the 1997 California Department of Fish and Game Memorandum of Understanding (MOU); and the reduction of stream releases during wetter-year/wetter-season flows due to the restored operational capacity of Calaveras Reservoir. Supplementing the Figure 2.7-1 representation of Calaveras Dam stream releases is Table 2.7-1, which illustrates releases for the WSIP and base settings and the difference in releases between the two.

Table 2.7-1

Total Stream Release from Calaveras Reservoir (Acre-feet) ${ }^{\text {(Average within Year Type - Grouped by } 5 \text { Local Reservoir Runoff) }}$ WSIP													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	429	246	998	4,985	14,425	9,862	5,085	255	386	417	425	415	37,928
Above Normal	425	258	172	746	3,196	2,688	606	327	396	424	428	417	10,082
Normal	429	275	194	548	725	506	265	370	408	428	430	417	4,995
Below Normal	428	275	246	672	876	596	345	389	411	430	430	417	5,515
Dry	429	292	281	778	1,044	747	375	407	416	430	430	417	6,044
All Years	428	269	374	1,526	4,004	2,850	1,314	350	403	426	428	417	12,788
Total Stream Release from Calaveras Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	1,741	9,267	16,622	9,968	5,024	0	0	0	0	0	42,623
Above Normal	0	0	184	2,685	5,918	3,096	459	0	0	0	0	0	12,342
Normal	0	0	216	364	898	353	0	0	0	0	0	0	1,831
Below Normal	0	0	0	0	0	0	0	0	0	0	0	0	0
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	420	2,436	4,645	2,656	1,076	0	0	0	0	0	11,233
Difference in Total Stream Release from Calaveras Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff) WSIP minus Base													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	429	246	-744	-4,282	-2,197	-106	61	255	386	417	425	415	-4,694
Above Normal	425	258	-12	-1,939	-2,721	-408	147	327	396	424	428	417	-2,259
Normal	429	275	-22	184	-173	154	265	370	408	428	430	417	3,164
Below Normal	428	275	246	672	876	596	345	389	411	430	430	417	5,515
Dry	429	292	281	778	1,044	747	375	407	416	430	430	417	6,044
All Years	428	269	-46	-910	-641	194	239	350	403	426	428	417	1,556

Compared to the base setting, diversions from Alameda Creek to Calaveras Reservoir would increase in the WSIP setting. With the current constraints on Calaveras Reservoir storage, diversions to Calaveras Creek are rejected. With the restoration of operational storage in the reservoir, the opportunity to divert water into the reservoir would increase.

To provide a context for the amount of water diverted at the Alameda Creek Diversion Dam (ACDD), Table 2.7-2 illustrates the estimated runoff (inflow) to the dam, averaged by year type. Table 2.7-3 compares diversions to Calaveras Reservoir in the WSIP and base settings. An increase in diversions during the winter season due to WSIP operation would generally occur during normal or wetter year types, as reservoir storage space would accommodate diversions. During summer in all years and during all periods in below-normal and normal years, diversions would continue as they do currently. A few exceptions occur when diversions would be reduced from that of the base setting.

Table 2.7-2
Total Inflow to ACDD (Acre-feet)

Total Inflow to ACDD (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	7	156	2,472	7,382	8,284	6,064	3,608	1,035	227	42	18	12	29,308
Above Normal	18	183	1,817	4,394	5,619	3,692	1,976	542	139	23	11	7	18,420
Normal	7	41	1,589	1,840	2,684	2,029	939	332	87	8	5	3	9,564
Below Normal	7	42	554	1,069	1,689	1,271	395	246	64	6	4	3	5,350
Dry	7	16	222	314	531	382	238	124	38	3	3	2	1,880
All Years	9	88	1,327	2,993	3,759	2,683	1,425	454	111	17	8	5	12,880

Table 2.7-3

Calaveras Reservoir Inflow from Upper Alameda Creek (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	7	128	1,093	1,113	302	337	649	861	227	42	18	12	4,790
Above Normal	11	159	1,226	1,936	1,883	563	1,017	542	139	23	11	7	7,518
Normal	7	35	1,004	1,580	1,888	1,570	826	332	87	8	5	3	7,345
Below Normal	7	42	536	1,024	1,587	1,042	395	246	64	6	4	3	4,956
Dry	7	16	222	314	473	382	238	124	38	3	3	2	1,823
All Years	8	77	818	1,200	1,239	780	627	421	111	17	8	5	5,310
Calaveras Reservoir Inflow from Upper Alameda Creek (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	7	128	1,093	415	185	307	637	904	227	42	18	12	3,977
Above Normal	11	159	691	722	325	596	1,284	542	139	23	11	7	4,510
Normal	7	35	634	972	815	1,123	813	332	87	8	5	3	4,833
Below Normal	7	42	536	1,024	1,587	1,042	395	246	64	6	4	3	4,956
Dry	7	16	222	314	473	382	238	124	38	3	3	2	1,823
All Years	8	77	635	694	684	693	677	429	111	17	8	5	4,037
Difference in Calaveras Reservoir Inflow from Upper Alameda Creek (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	0	697	117	30	12	-43	0	0	0	0	813
Above Normal	0	0	535	1,215	1,558	-33	-267	0	0	0	0	0	3,008
Normal	0	0	369	608	1,074	447	13	0	0	0	0	0	2,511
Below Normal	0	0	0	0	0	0	0	0	0	0	0	0	0
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	183	506	555	86	-50	-8	0	0	0	0	1,272

Commensurate with changes in diversions from Alameda Creek to Calaveras Reservoir would be changes in flow below the ACDD. Table 2.7-4 illustrates the flow below the ACDD for the WSIP and base settings. Table $2.7-4$ shows that, opposed to diversions to Calaveras Reservoir, flow passing the ACDD would decrease in the WSIP setting. With operational capacity restored at Calaveras Reservoir, there would be more opportunity (and need) to divert Alameda Creek flows; thus, flow passing the dam would be reduced.

Table 2.7-4

Flow Passing Alameda Creek Diversion Dam (Acre-feet)(Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	28	1,379	6,269	7,982	5,727	2,960	173	0	0	0	0	24,518
Above Normal	7	23	591	2,457	3,735	3,129	959	0	0	0	0	0	10,903
Normal	0	6	585	260	796	459	113	0	0	0	0	0	2,219
Below Normal	0	0	18	45	102	229	0	0	0	0	0	0	394
Dry	0	0	0	0	57	0	0	0	0	0	0	0	58
All Years	1	12	509	1,793	2,520	1,903	798	34	0	0	0	0	7,570
Flow Passing Alameda Creek Diversion Dam (Acre-feet)													
(Average within Year Type - Grouped by 5 Local Reservoir Runoff) Base													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	28	1,379	6,967	8,099	5,757	2,972	130	0	0	0	0	25,331
Above Normal	7	23	1,126	3,672	5,294	3,096	692	0	0	0	0	0	13,911
Normal	0	6	954	868	1,870	906	126	0	0	0	0	0	4,731
Below Normal	0	0	18	45	102	229	0	0	0	0	0	0	394
Dry	0	0	0	0	57	0	0	0	0	0	0	0	58
All Years	1	12	692	2,299	3,075	1,989	748	26	0	0	0	0	8,843
Difference in Flow Passing Alameda Creek Diversion Dam (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff) WSIP minus Base													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	0	-697	-117	-30	-12	43	0	0	0	0	-813
Above Normal	0	0	-535	-1,215	-1,558	33	267	0	0	0	0	0	-3,008
Normal	0	0	-369	-608	-1,074	-447	-13	0	0	0	0	0	-2,511
Below Normal	0	0	0	0	0	0	0	0	0	0	0	0	0
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	-183	-506	-555	-86	50	8	0	0	0	0	-1,272

Flow below the confluence of Alameda Creek and Calaveras Creek is affected by releases from Calaveras Dam to the stream, flow passing the ACDD, and unregulated flow below the ACDD and Calaveras Dam. Table 2.7-5 illustrates the flow below the confluence for the WSIP and base settings, and the difference in inflow between the two. The notable differences between the WSIP and the base

APPENDIX 01

settings are the addition of stream flows representing the 1997 MOU and the reduction of wetter-year/wet-season flows due to the restoration of Calaveras Reservoir storage.

Table 2.7-5

Flow below Alameda/Calaveras Creek Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)					Feb	Mar	Apr	May	Jun	Jul	WSIP		
	Oct	Nov	Dec	Jan							Aug	Sep	WY Total
Wet	430	326	2,721	12,263	23,595	16,575	8,647	605	417	429	429	417	66,854
Above Normal	437	326	1,007	3,801	7,708	6,379	1,876	430	418	430	429	417	23,658
Normal	429	304	1,006	1,077	1,907	1,293	536	430	417	429	430	417	8,675
Below Normal	429	297	324	859	1,214	1,046	417	430	417	430	430	417	6,709
Dry	429	298	307	813	1,168	816	418	430	417	430	430	417	6,373
All Years	431	310	1,063	3,728	7,053	5,185	2,349	464	417	430	429	417	22,276
Flow below Alameda/Calaveras Creek Confluence (Acre-feet)													
(Average within	e - G	by 5	Reservo	noff)								Base	
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	1	80	3,465	17,243	25,909	16,711	8,598	307	30	12	4	2	72,361
Above Normal	12	68	1,554	6,954	11,987	6,754	1,462	103	22	6	2	1	28,926
Normal	1	29	1,397	1,501	3,154	1,586	284	60	9	2	0	0	8,022
Below Normal	1	22	78	186	338	450	72	41	7	0	0	0	1,195
Dry	1	6	26	35	124	69	43	23	1	0	0	0	328
All Years	3	41	1,292	5,145	8,250	5,077	2,060	106	14	4	1	1	21,993
Difference in Flow below Alameda/Calaveras Creek Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	429	246	-744	-4,979	-2,314	-136	49	298	386	417	425	415	-5,507
Above Normal	425	258	-547	-3,153	-4,279	-375	414	327	396	424	428	417	-5,267
Normal	429	275	-391	-424	-1,247	-293	251	370	408	428	430	417	653
Below Normal	428	275	246	672	876	596	345	389	411	430	430	417	5,515
Dry	429	292	281	778	1,044	747	375	407	416	430	430	417	6,044
All Years	428	269	-229	-1,417	-1,197	108	289	358	403	426	428	417	283

A flow recapture facility in Alameda Creek below Calaveras Reservoir is incorporated in the WSIP setting. This facility is assumed to recapture flows explicitly released from Calaveras Dam in the representation of the 1997 MOU. The effect of the recapture is a reduction in the flow that occurs below the confluence of Alameda and Calaveras Creeks, but only to the extent that releases were explicitly made from Calaveras Reservoir. Flows below this diversion have been estimated and noted as the flow above the Alameda and San Antonio Creek confluence. Table 2.7-6 illustrates the flow at this location for the WSIP and base settings. The flows identified at this location indicate flow occurring below the confluence of Alameda and Calaveras Creeks (described above), with the addition of estimated unregulated stream accretions between the Alameda-Calaveras Creek confluence and the Alameda-San Antonio Creek confluence minus the water assumed to be recaptured (diverted) by the SFPUC from the creek.

Table 2.7-6

Alameda Creek Flow abv San Antonio Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)					Feb	Mar	Apr	May	Jun	Jul	WSIP								
	Oct	Nov	Dec	Jan							Aug	Sep	WY Total						
Wet	6	154	3,113	13,610	25,199	17,720	9,297	556	76	33	15	9	69,788						
Above Normal	19	150	1,203	4,350	8,422	6,871	2,127	217	54	20	9	6	23,450						
Normal	7	64	1,131	909	1,740	1,219	466	128	28	9	4	3	5,706						
Below Normal	7	56	183	404	678	717	154	91	20	5	3	2	2,321						
Dry	6	19	70	98	231	145	91	48	9	3	2	2	724						
All Years	9	89	1,129	3,838	7,188	5,297	2,396	207	38	14	7	4	20,215						
Alameda Creek Flow abv San Antonio Confluence (Acre-feet)																			
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total						
Wet	6	154	3,973	18,714	27,673	17,977	9,358	513	76	33	15	9	78,502						
Above Normal	19	150	1,922	7,772	13,068	7,467	1,861	217	54	20	9	6	32,566						
Normal	7	64	1,716	1,881	3,712	2,007	479	128	28	9	4	3	10,037						
Below Normal	7	56	183	404	678	717	154	91	20	5	3	2	2,321						
Dry	6	19	70	98	231	145	91	48	9	3	2	2	724						
All Years	9	89	1,560	5,733	9,019	5,624	2,355	198	38	14	7	4	24,650						
Difference in Alameda Creek Flow abv San Antonio Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)																			
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total						
Wet	0	0	-860	-5,104	-2,474	-258	-61	43	0	0	0	0	-8,714						
Above Normal	0	0	-719	-3,422	-4,646	-596	266	0	0	0	0	0	-9,117						
Normal	0	0	-585	-972	-1,972	-788	-13	0	0	0	0	0	-4,331						
Below Normal	0	0	0	0	0	0	0	0	0	0	0	0	0						
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0						
All Years	0	0	-431	-1,895	-1,831	-328	41	8	0	0	0	0	-4,435						

The difference in San Antonio Reservoir storage between the WSIP and base settings is the result of several factors, and is predominantly due to the restoration of the operational capacity of Calaveras Reservoir and the maintenance of Hetch Hetchy conveyance. Figure 2.7-3 illustrates a chronological trace of the simulation of San Antonio Reservoir storage and stream releases from the dam. Shown in Figure 2.7-3 are the results for the WSIP and base settings. In the base setting, the limited operating

APPENDIX 01

storage capacity at Calaveras Reservoir leads to a different operation at San Antonio Reservoir, one that draws relatively more stored water for system demands when the draw from Calaveras Reservoir is constrained due to limited storage. The resultant effect is that the WSIP setting would retain more storage in San Antonio Reservoir than occurs in the base setting. The exception to this outcome is during cyclic maintenance of Hetch Hetchy conveyance that would constrain Hetch Hetchy diversions every year, but most dramatically every fifth year. During these periods, additional water would be drawn from San Antonio Reservoir and the other Bay Area reservoirs to serve systemwide deliveries when limited or no water would be available from Hetch Hetchy. The coincidence of wet local Bay Area watershed hydrology, reservoir storage balancing among the Bay Area reservoirs, and maintenance would affect the severity of drawdown and the rate of replenishment of San Antonio Reservoir.

Also affecting the magnitude of draw from San Antonio Reservoir are modeling assumptions for the balancing of total Bay Area reservoir storage among the five major SFPUC reservoirs. The model balances storage among reservoirs by way of an input file by the modeler concerning the relative draw (percentage) from each reservoir under various storage conditions. These are discretionary inputs in the model, and the logic and relative percentages are meant to mimic the current practice and discretion of the system operators based on recognition of the physical conveyance constraints within the system and the ability of each reservoir to provide yield and water delivery security. The logic currently favors the retention of storage in the Peninsula reservoirs for security reasons, and thus the provision of additional water between the settings is balanced between San Antonio and Calaveras Reservoirs. Figure 2.7-4 illustrates the average monthly storage in San Antonio Reservoir for the 82 -year simulation, and the range in storage for each month for the WSIP and base settings.

Figure 2.7-3
San Antonio Reservoir Storage and Stream Release

APPENDIX 01

Figure 2.7-4

There would very little change in stream releases below San Antonio Reservoir between the WSIP and base settings. With storage conditions lower at some times and higher at other times, a difference in the ability to regulate reservoir inflow and avoid stream releases is expected. Given the sometimes rigid constraints within the modeling assumptions, the model will overestimate the frequency and magnitude of stream releases from San Antonio Reservoir under any of the investigated settings. The flexibility that occurs in actual operations would likely avoid most of the releases represented by the model. The modeled stream releases from San Antonio Reservoir and difference between releases for the WSIP setting and base setting are shown in Table 2.7-7. The differences between the two settings range from increases to decreases in flow, generally with decreases in releases. This modeled circumstance reflects the different resulting storage operations between the two settings, as seen in Figure 2.7-3. As described above, the model will overestimate the frequency and magnitude of releases from San Antonio Reservoir, and the actual releases from San Antonio Reservoir in any setting and the difference between settings are expected to be minor.

Table 2.7-7

Total Stream Release from San Antonio Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)					Feb	Mar	Apr	May	Jun	Jul	WSIP		
	Oct	Nov	Dec	Jan							Aug	Sep	WY Total
Wet	0	0	44	1,208	3,251	1,558	658	151	0	0	0	0	6,870
Above Normal	0	0	0	442	1,381	158	192	62	0	0	0	0	2,235
Normal	0	0	11	287	78	6	13	0	0	0	0	0	395
Below Normal	0	0	0	0	0	0	4	0	0	0	0	0	4
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	11	383	936	338	172	42	0	0	0	0	1,882
Total Stream Release from San Antonio Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	101	1,322	3,669	3,288	1,398	94	0	0	0	0	9,872
Above Normal	0	0	26	687	1,909	1,487	116	58	0	0	0	0	4,283
Normal	0	0	7	370	441	237	65	0	0	0	0	0	1,120
Below Normal	0	0	0	0	41	0	0	0	0	0	0	0	41
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	26	472	1,206	996	309	30	0	0	0	0	3,041
Difference in Total Stream Release from San Antonio Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)											WSIP	Base	
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	-57	-114	-418	-1,730	-740	57	0	0	0	0	-3,002
Above Normal	0	0	-26	-246	-528	-1,329	77	4	0	0	0	0	-2,048
Normal	0	0	5	-82	-363	-231	-52	0	0	0	0	0	-724
Below Normal	0	0	0	0	-41	0	4	0	0	0	0	0	-37
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	-16	-89	-270	-658	-138	12	0	0	0	0	-1,159

Flow below the confluence of Alameda and San Antonio Creeks is influenced by releases from San Antonio Reservoir and flow arriving at the location from Alameda Creek, which includes upstream impairment by SFPUC operations and facilities. Table 2.7-8 illustrates the flow below the confluence for the WSIP and base settings, and the differences in flow between the two. The differences are particularly due to the effects of restoring Calaveras Reservoir operating capacity in the WSIP setting.

Table 2.7-8

Flow blw San Antonio and Alameda Creek Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	6	154	3,157	14,818	28,449	19,278	9,955	707	76	33	15	9	76,658
Above Normal	19	150	1,203	4,792	9,803	7,029	2,320	279	54	20	9	6	25,685
Normal	7	64	1,142	1,197	1,818	1,224	478	128	28	9	4	3	6,101
Below Normal	7	56	183	404	678	717	159	91	20	5	3	2	2,326
Dry	6	19	70	98	231	145	91	48	9	3	2	2	724
All Years	9	89	1,140	4,221	8,124	5,635	2,567	249	38	14	7	4	22,097
Flow blw San Antonio and Alameda Creek Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	6	154	4,075	20,036	31,342	21,266	10,756	607	76	33	15	9	88,374
Above Normal	19	150	1,948	8,459	14,977	8,954	1,977	276	54	20	9	6	36,849
Normal	7	64	1,723	2,251	4,153	2,244	544	128	28	9	4	3	11,157
Below Normal	7	56	183	404	720	717	154	91	20	5	3	2	2,363
Dry	6	19	70	98	231	145	91	48	9	3	2	2	724
All Years	9	89	1,587	6,205	10,225	6,620	2,664	229	38	14	7	4	27,691
Difference in Flow blw San Antonio and Alameda Creek Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	-917	-5,217	-2,892	-1,988	-801	100	0	0	0	0	-11,716
Above Normal	0	0	-745	-3,667	-5,174	-1,925	343	4	0	0	0	0	-11,164
Normal	0	0	-581	-1,054	-2,335	-1,020	-66	0	0	0	0	0	-5,056
Below Normal	0	0	0	0	-41	0	4	0	0	0	0	0	-37
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	-447	-1,984	-2,101	-986	-97	20	0	0	0	0	-5,595

2.8 Crystal Springs and San Andreas Reservoirs

Fundamental to the difference in storage operations between the WSIP setting and the base setting is the restoration of reservoir operation capacity in the WSIP setting, which does not occur in the base setting. Full capacity of the restored reservoir is 22,150 million gallons (approximately 67,980 acre-feet), and the current full operating capacity is 18,520 million gallons (approximately 56,840 acre-feet). The result is the operation of Crystal Springs Reservoir at a higher maximum storage in the WSIP setting. Figure 2.8-1 illustrates a chronological trace of the simulation of Crystal Springs Reservoir storage and stream releases from Crystal Springs Dam. Shown in Figure 2.8-1 are the results for the WSIP and base settings.

Compared to the base setting, the WSIP setting would generally result in a shifting of the maximum storage level and the normal range of reservoir operation to a greater volume (elevation); the lower end of the monthly operating range would normally be greater in storage than in the base setting. In some years, the variation from maximum storage to minimum storage may increase in the WSIP setting. The cyclic greater draw from storage in the WSIP setting every fifth year is associated with the maintenance of the Hetch Hetchy conveyance system.

Figure 2.8-2 illustrates the average monthly storage in Crystal Springs Reservoir for the 82-year simulation, and the range in storage for each month for the WSIP and base settings. Consistent with the discussion above, the WSIP setting would result in reservoir storage operating at a higher average and higher upper-range than the base setting. This circumstance predominantly occurs due to the restoration of the operating capacity of Crystal Springs Reservoir.

There is minimal difference in stream releases between the WSIP and the base setting (which could be either an increase or decrease in the release). The potential difference is attributed to whether the resulting storage in the reservoir is higher or lower between the two settings. Part of the difference in modeled Crystal Springs Reservoir storage is due to modeling assumptions for the proportionate management of storage among the Bay Area reservoirs, and the coincidence of constrained conveyance flow rates. In actual operations, it is anticipated that system operators would manage the reservoir system such that stream releases would be minimal under any setting and essentially no difference would occur between the WSIP and base settings.

APPENDIX O1

Figure 2.8-1
Crystal Springs Reservoir Storage and Release

Figure 2.8-2

Table 2.8-1 illustrates the stream releases for the WSIP and base settings, and the difference in modeled flows between the two settings. A greater range in Crystal Springs Reservoir operation would lead to an increased potential to regulate reservoir inflow, which would lead to less risk in needing to make stream releases. However, as described above, actual system operations will attempt to minimize releases under any setting; thus, the difference in releases between the WSIP and base setting will be minimal, if any.

Table 2.8-1

Total Stream Release from Crystal Springs Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	0	1,098	2,435	732	115	48	0	0	0	0	4,428
Above Normal	0	0	0	111	353	0	32	47	0	0	0	0	544
Normal	0	0	0	0	0	0	0	31	0	0	0	0	31
Below Normal	0	0	0	0	0	0	31	35	0	0	0	0	67
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	0	237	548	143	36	33	0	0	0	0	997
Total Stream Release from Crystal Springs Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	107	2,744	4,279	1,376	1,047	2	0	0	0	0	9,556
Above Normal	0	0	0	618	1,343	29	52	100	0	0	0	0	2,142
Normal	0	0	0	0	268	0	0	0	0	0	0	0	268
Below Normal	0	0	0	0	0	0	0	0	0	0	0	0	0
Dry	0	0	0	0	0	0	0	0	62	0	0	0	62
All Years	0	0	21	664	1,166	274	215	21	12	0	0	0	2,373
Difference in Total Stream Release from Crystal Springs Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	-107	-1,646	-1,844	-643	-932	46	0	0	0	0	-5,127
Above Normal	0	0	0	-507	-990	-29	-20	-52	0	0	0	0	-1,598
Normal	0	0	0	0	-268	0	0	31	0	0	0	0	-237
Below Normal	0	0	0	0	0	0	31	35	0	0	0	0	67
Dry	0	0	0	0	0	0	0	0	-62	0	0	0	-62
All Years	0	0	-21	-426	-617	-132	-179	12	-12	0	0	0	-1,376

San Andreas Reservoir operations would generally be the same between the WSIP and base settings. Reservoir storage would follow a systematic filling and lowering each year. Figure 2.8-3 illustrates a chronological trace of the simulation of San Andreas Reservoir storage and stream releases from Crystal Springs Dam. Shown in Figure 2.8-3 are the results for the WSIP and base settings. There are no projected stream releases from San Andreas Reservoir in any setting. Notable in Figure 2.8-3 is the difference in storage operation every fifth year. The WSIP setting storage operation differs from that in the base settings. The differences in operation arise from the assumed difference in Hetch Hetchy conveyance maintenance in each setting. In the WSIP setting, the maintenance occurs systematically every year, and to a greater degree every fifth year, which constrains the amount of Hetch Hetchy water supplied to serve water demands in the Bay Area. As discussed previously, during these winter periods, the Bay Area reservoir system accommodates the reduction in imported supply by serving the Bay Area water deliveries with the local watersheds' runoff and storage. At San Andreas Reservoir, the serving of

APPENDIX O1

Figure 2.8-3
San Andreas Reservoir Storage and Stream Release

water demand affects the reservoir when additional required water production at Harry Tracy Water Treatment Plant (Harry Tracy WTP) associated with the WSIP or the base-Calaveras unconstrained setting exceeds the ability to maintain San Andreas Reservoir storage with pumping from Crystal Springs Reservoir. The model assumes that the conveyance capacity from Crystal Springs Reservoir is the same among all of the settings. The additional water demand of the WSIP setting and the current demand of the base-Calaveras unconstrained setting require additional production from Harry Tracy WTP to be drawn from San Andreas Reservoir. Figure 2.8-4 illustrates the average monthly storage in San Andreas Reservoir for the 82-year simulation, and the range in storage for each month for the WSIP and base settings.

Figure 2.8-4

2.9 Pilarcitos Reservoir

The Coastside County Water District's (Coastside CWD) water demand and its SFPUC purchase request are projected to increase within the WSIP planning horizon of 2030. Within the context of the 2030 purchase request of 300 mgd , Coastside CWD's portion has been estimated to amount to about 3 mgd . This projected purchase request is approximately 1 mgd greater that its current purchase request. Considering the current physical constraints to deliveries from the SFPUC to Coastside CWD and the ongoing planning activities in the watershed, the precise means of serving Coastside CWD's additional purchase request (and the resultant potential changes in the operation of SFPUC facilities and their affected environs) are uncertain. ${ }^{2}$

Assuming a range of potential means to serve the additional purchase request from Coastside CWD, the following are potential hydrologic effects on SFPUC facilities and their affected environs:

- Due to limited yield from Pilarcitos Reservoir, additional diversions would be required from Crystal Springs Reservoir.
- If deliveries to Coastside CWD from Pilarcitos Reservoir increase during the winter season, these deliveries could potentially reduce storage in Pilarcitos Reservoir, thereby potentially reducing diversions to the San Mateo Creek watershed. Although the increased delivery would increase releases to Pilarcitos Creek from Pilarcitos Dam for a period of time, the increase would subsequently lead to a reduction in spills past Stone Dam.
- Additional wintertime deliveries could also potentially impair the ability to provide carryover storage into the summer season from Pilarcitos Reservoir, and subsequently lead to an acceleration of the beginning of the season when releases to Pilarcitos Creek from Pilarcitos Reservoir consist only of the passage of reservoir inflow.

[^1]
APPENDIX 01

- An increase in summertime deliveries from Pilarcitos Creek could also accelerate the beginning of the season when releases to Pilarcitos Creek from Pilarcitos Reservoir consist only of the passage of reservoir inflow.

Figure 2.9-1 illustrates the average monthly storage in Pilarcitos Reservoir for the 82-year simulation, and the range in storage for each month for the WSIP and base settings for one possible outcome of the SFPUC providing deliveries for Coastside CWD's increase in demand. Figure 2.9-2 illustrates a chronological trace of the simulation of Pilacitos Reservoir storage and stream releases from Pilarcitos Dam. Shown in the figures are the results for the WSIP and base settings. Assumed in the operation is an increase in purchase request by Coastside CWD, distributed on a proportionate monthly pattern during the year consistent with historical SFPUC deliveries. Also assumed is a conveyance constraint of 2 mgd to Coastside CWD from the Pilarcitos Creek source of water. When the assumed monthly purchase request of Coastside CWD exceeds this conveyance constraint, Coastside CWD's request is met with deliveries from Crystal Springs Reservoir.

The effect of the assumed Coastside CWD operation in combination with the effects of the rest of the SFPUC regional system operation results in occasional differences in the storage operation of Pilarcitos Reservoir. Overall, there would be a slightly lower average storage at Pilarcitos Reservoir. Several factors contribute to the changes. Additional water is drawn from Pilarcitos Reservoir to the San Mateo Creek watershed in reaction to additional demands being served from the SFPUC system. Pilarcitos Reservoir is at times also drawn to meet the increase in demand from Coastside CWD during months (e.g., spring months) when available conveyance capacity from Stone Dam exists. Both of these additional draws from the reservoir would deplete storage below that experienced in the base setting. Pilarcitos storage would typically replenish at the expense of reservoir spills that would have occurred at a future date, and within a year storage would end the same as in the base setting, as the reservoir would still be subsequently depleted to the minimum level at the spillway crest.

Figure 2.9-1

Stream releases from Pilarcitos Dam are also shown in Figure 2.9-2. Releases can occur for diversions at Stone Dam for Coastside CWD deliveries, conveyance to the San Mateo Creek watershed (e.g., Crystal Springs Reservoir), and reservoir spills. Pilarcitos Creek typically gains flow from unregulated tributary streams and runoff below Pilarcitos Dam. The differences in flow between the WSIP setting and base setting are shown chronologically in Table 2.9-1 and summarized by monthly averages within year types in Table 2.9-2. The positive changes in flows during the winter and spring are indicative of the additional draw of water from the reservoir to serve the increased demand of Coastside CWD during the period when conveyance capacity exists from Stone Dam. The few reductions in flow during the summer are indicative of years when additional releases earlier in a year lead to the reservoir being depleted to minimum storage earlier in the year, thus reducing the amount of water released in a later month. Reductions in flow during the winter and spring are indicative of the reservoir replenishing additionally depleted storage associated with the WSIP setting.

APPENDIX 01

Figure 2.9-2

Pilarcitos Reservoir Storage and Stream Release

APPENDIX 01

Table 2.9-1
Difference in Total Stream Release from Pilarcitos Reservoir (Acre-feet)

Table 2.9-2

Total Stream Release from Pilarcitos Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)					Feb	Mar	Apr	May	Jun	Jul	WSIP		
	Oct	Nov	Dec	Jan							Aug	Sep	WY Total
Wet	57	11	188	837	2,116	1,563	19	70	152	175	183	176	5,547
Above Normal	63	44	47	15	432	102	31	117	161	181	185	169	1,546
Normal	56	9	8	34	32	32	83	143	171	183	152	116	1,018
Below Normal	52	28	9	39	23	61	126	146	164	149	96	47	940
Dry	38	7	13	59	44	79	61	56	51	7	0	0	416
All Years	53	20	53	193	522	360	64	107	141	140	124	102	1,878
Total Stream Release from Pilarcitos Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	54	3	4	953	2,144	1,770	242	70	152	175	183	177	5,927
Above Normal	56	37	20	137	605	641	22	115	161	181	186	169	2,328
Normal	55	3	7	15	24	9	60	139	171	185	164	128	960
Below Normal	57	6	7	15	6	23	103	154	164	171	124	65	894
Dry	36	0	11	26	17	41	70	69	55	44	8	0	378
All Years	52	10	10	225	553	493	98	110	141	152	134	108	2,085
Difference in Total Stream Release from Pilarcitos Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	4	8	184	-116	-28	-207	-223	0	0	0	0	-1	-380
Above Normal	6	7	27	-121	-173	-539	9	2	0	0	-1	0	-782
Normal	1	7	1	19	8	23	23	3	0	-3	-12	-11	59
Below Normal	-5	23	2	24	17	38	24	-9	0	-22	-28	-17	46
Dry	2	7	2	32	27	38	-9	-13	-3	-37	-8	0	38
All Years	2	10	43	-33	-31	-132	-34	-3	-1	-12	-10	-6	-208

The effect of the WSIP on Pilarcitos Creek flows below Stone Dam is different than the effect on flows below Pilarictos Dam. Figure 2.9-3 illustrates the chronological trace of inflow to Stone Dam, which includes releases from Pilarcitos Dam to Pilarcitos Creek and unregulated flow occurring to the stream below Pilarcitos Dam, and releases (spills) from Stone Dam to Pilarcitos Creek. Shown in the figure are the results for the WSIP setting and the base setting. The flow past Stone Dam is typically minor (zero in modeling results, but may be measurable in terms of leakage and seepage past the dam), as inflow to the dam is diverted to Coastside CWD or to the San Mateo watershed. Releases past Stone Dam are typically the result of unregulated flow below Pilarcitos Dam exceeding the delivery needs of Coastside CWD at a time when the storage level at Crystal Springs Reservoir rejects the water from the Pilarcitos watershed.

The changes in flow below Stone Dam would typically occur during the rainy season between the months of January and March, in at least one month during about half of the years. Table 2.9-3 summarizes the results of the WSIP and base settings in terms of average monthly flows by year type, and the average differences in flow between the two settings.

APPENDIX O1

Figure 2.9-3

Stone Dam Stream Release and Inflow

APPENDIX 01

Table 2.9-3

Total Stream Release from Stone Dam (Acre-feet)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	324	1,493	3,176	2,188	103	0	0	0	0	0	7,282
Above Normal	0	0	42	108	734	120	0	0	0	0	0	0	1,003
Normal	0	0	45	27	135	0	0	0	0	0	0	0	208
Below Normal	0	0	0	0	0	0	0	0	0	0	0	0	0
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	81	319	798	452	20	0	0	0	0	0	1,669
Total Stream Release from Stone Dam (Acre-feet)													
(Average within Year Type - Grouped by 5 Local Reservoir Runoff) Base													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	164	1,819	3,252	2,509	479	0	0	0	0	0	8,223
Above Normal	0	0	46	384	1,174	921	0	0	0	0	0	0	2,525
Normal	0	0	49	30	197	0	0	0	0	0	0	0	276
Below Normal	0	0	0	0	0	0	0	0	0	0	0	0	0
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	51	440	917	680	94	0	0	0	0	0	2,182
Difference in Total Stream Release from Stone Dam (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	160	-326	-77	-322	-377	0	0	0	0	0	-941
Above Normal	0	0	-4	-277	-440	-801	0	0	0	0	0	0	-1,522
Normal	0	0	-4	-3	-62	0	0	0	0	0	0	0	-69
Below Normal	0	0	0	0	0	0	0	0	0	0	0	0	0
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	30	-122	-118	-229	-74	0	0	0	0	0	-513

Memorandum

Subject: HH/LSM Assumptions and Results - CEQA Alternatives Modified WSIP
From: Daniel B. Steiner
Date: April 29, 2008

1. Introduction

This memorandum summarizes assumptions for, and discusses the interpretation of, the HH/LSM results for the simulation of the CEQA alternative referred to as the Modified WSIP Alternative. The Draft PEIR analyzed six CEQA alternatives: (1) No Program, (2) No Purchase Request Increase, (3) Aggressive Conservation/Water Recycling and Local Groundwater, (4) Lower Tuolumne River Diversion, (5) Year-round Desalination at Oceanside Alternative, and (6) Regional Desalination for Drought. The scenarios represent CEQA program alternatives that vary from the WSIP on key program components in a manner expected to avoid or reduce potentially significant effects of the proposed program. The Modified WSIP Alternative supplements the previously described analyses. Tables 1-1 and 1-2 summarize the components, various modeling assumptions, and performance and hydrologic results for the Modified WSIP Alternative in comparison to the modeled existing (2005) base setting (with Calaveras Reservoir constrained by DSOD restrictions) and the WSIP setting.

The hydrology that would result under this alternative is primarily discussed in terms of a comparison to the proposed program and contrasted to the baseline condition of the PEIR, namely the simulated current (2005) operation of the SFPUC regional water system assuming that the Calaveras and Crystal Springs Reservoirs operation are constrained by DSOD restrictions. Only primary hydrologic parameters such as projected water deliveries, reservoir storage, and stream flows are compared, and only those parameters that have been identified as key hydrologic factors that could lead to environmental impacts are illustrated.

APPENDIX O2

Table 1-1
Setting Characteristics and Modeling Assumptions (Part 1/3)

APPENDIX 02

Table 1-1
Setting Characteristics and Modeling Assumptions (Part 2/3)

APPENDIX 02

Table 1-1
Setting Characteristics and Modeling Assumptions (Part 3/3)

Assumptions and Characteristics of Setting and/or Program		Baseline	Proposed WSIP	CEQA Alternatives ${ }^{3}$
	Units	Baseline Conditions ${ }^{1}$ - Calaveras Constrained		Modified WSIP
Tuolumne River System Operational Parameters				
Hetch Hetchy Reservoir Operation				
Storage - Minimum/Maximum Fall/Winter Operation Storage	TAF	26.1-360.4 30 TAF winter buffer	26.1-360.4 30 TAF winter buffer	SameasBaseline andWSIP
1987 Stipulation Minimum Release Flows		Yes	Yes	
1987 Stipulation Supplemental Release Flows		No	No	
Cherry Reservoir Operation				
Storage - Minimum/Maximum Fall/Winter Operation Storage	TAF	$\begin{gathered} 1.0-273.3 \\ \text { 25.3 TAF winter buffer } \\ \hline \end{gathered}$	$\begin{gathered} 1.0-273.3 \\ \text { 25.3 TAF winter buffer } \end{gathered}$	Same as Baseline and WSIP
Eleanor Reservoir Operation				
Storage - Minimum/Maximum Fall/Winter Operation Storage	TAF	$0.0-27.1$ Required Minimum Storage	$\begin{gathered} \hline 0.0-27.1 \\ \text { Reqrd Minimum Stor } \\ \hline \end{gathered}$	Same as Baseline and WSIP
New Don Pedro Water Bank Account				
Storage - Minimum/Maximum	TAF	$0.0-570.0$ Temporary storage up to 740 TAF during Apr - Sep	$0.0-570.0$ Temp stor up to 740 TAF during Apr - Sep	Same as Baseline and WSIP
Conveyance				
San Joaquin Pipelines Maximum	MGD	290	313	Same as WSIP
San Joaquin Pipelines Minimum	MGD	70	70	Same as WSIP
San Joaquin Pipelines Flow Rate Changes		11 Stepwise	17 Stepwise	Same as WSIP
		Surrogate minimum changes by allowing only 7 changes in a year	Allow up to 7 changes in a year (surrogate)	Same as WSIP
San Joaquin Pipelines Maintenance		Cycle one pipeline out Nov - Mar each year (average remaining capacity rotation) maximum 210 MGD	Cyclic 5-year mantenance (see note)	$\begin{gathered} \hline \text { Same } \\ \text { as } \\ \text { WSIP } \\ \hline \end{gathered}$
TID/MID Operational Parameters				vailable Apr - Oct all years available Year 5 Nov - Dec d Year 3 Dec
Districts' Tuolumne Diversion ${ }^{17}$		Varies annually based on land use and water availability Annual average 875 TAF	Set equal to baseline conditions. SFPUC effects measured by the result of reducing inflow to DP and its effect upon La Grange releases to the TR	Same as WSIP but reduced by amount of water transfer
Tuolumne River La Grange Flow Releases Don Pedro, 1996 FERC VAMP - considered but not modeled ${ }^{18}$		$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$

APPENDIX O2

Table 1-2
Summary of Modeling Results (Part 1/2)

HH/LSM Simulation Results		Baseline	Proposed WSIP	CEQA Alternatives ${ }^{3}$	
	Units	Baseline Conditions ${ }^{1}$ - Calaveras Constrained		Modified WSIP	
Design Drought Production \& Disposition ${ }^{19}$					
San Joaquin Pipeline Diversion	MGD	208.7	235.0	226.7	
Bay-Area Deliveries	MGD	218.3	248.9	240.0	
Added Groveland \& Coastside Delivery	MGD	2.6	3.6	3.6	
Local Reservoir Evaporation	MGD	10.7	12.5	12.5	
Inflow from ACDD	MGD	1.3	1.6	0.7	
Flow Recapture	MGD	0	5.3	5.4	
Local Reservoir Stream Release	MGD	0.6	5.4	4.6	
Desalination	MGD	0	0	0	
Westside Basin	MGD	0	5.6	5.6	
District Transfer to NDP Water Bank	MGD	0	24.7	16.5	
Local Storage - Begin	mg	53,854	77,310	75,440	
Local Storage - End	MG	18,403	18,495	18,644	
Study Average Production \& Disposition (1921-02) ${ }^{20}$					
Tuolumne River System					
Reservoirs					
Hetch Hetchy					
River	AF	275,255	267,021	270,577	
Stream Minimum Release	AF	65,728	65,593	65,595	
Tunnel	AF	470,709	478,932	475,373	
Evaporation	${ }_{\text {AF }}$	${ }^{3,893}$	3,869	3,872	
Cherry					
Eleanor Gravity	AF	289	289	289	
Eleanor Pump	AF	118,251	118,274	118,316	
River	AF	41,636	41,439	41,364	
Stream Minimum Release Tunnel	AF				
Tunnel Evaporation	${ }^{\text {AF }}$	352,692 3,505	352,915 3,501	353,056 3,501	
Evaporation Reservoir	${ }_{\text {AF }}^{\text {AF }}$	3,505 239,971	3,501 239,309	3,501 239,182	
Eleanor					
Inflow	AF	169,617	169,617	169,617	
Eleanor Gravity	AF	289	289	289	
Eleanor Pump	${ }^{\text {aF }}$	118,251	118,274	118,316	
River	AF	49,171	49,148	49,106	
Stream Minimum Release	AF				
Evaporation	${ }_{\text {AF }}$	1,906	1,906	1,906	
Don Pedro Reservoir					
MID Diversion	AF	302,054	302,055	282,455	
TID Diversion	AF	573,164	573,168	573,168	
LaGrange Total Stream	AF	668,876	644,009	671,982	
LaGrange Minimum Stream Release	AF	221,477	221,477	221,477	
Total Evaporation	AF	43,493	42,604	43,474	
Water Bank Account ${ }_{\text {a }}$					
Balance	AF	514,299	516,733	515,541	
San Joaquin Pipelines					
Volume (AF) Volume (MG)	AF	$\begin{array}{r}247,763 \\ \hline 80734\end{array}$	$\begin{array}{r}274,450 \\ \hline 89,429\end{array}$	264,634	
Volume (MG)	MG	80,734	89,429	86,231	
Rate (MGD) Max Rate (MGD)	MGD	221	245	236	
Max Rate (MGD) Min Rate (MGD)	MGD	290	313	313	
Min Rate (MGD)	MGD	70	0	0	
East Bay System					
ReservoirsCalaveras					
Inflow	mg	12,368	12,368	12,368	
From ACDD	MG	1,316	1,730	1,163	
Stream Stream Flow Recapture	MG	3,660	4,167 1538	3.768 1 1893	
Stream Flow Recapture	mg	0	1.538	1,893	
To SWWTP To San Antonio	MG	9,013	8,244	8.068	
To San Antonio	MG	${ }_{1}^{0}$	${ }_{1}^{0}$	${ }_{1}{ }^{1710}$	
Evaporation Resevoir	MG	1,023 10,969	1,704 28,170	1,710 28,324	
Inflow	MG	2,468	2,468	2,468	
From Calaveras/SJPL	mg	1,173	1,734	1,242	
Stream	MG	991	613	${ }^{805}$	
To SWWTp	MG	1,693	2,628	1,906	
Evaporation	mG	1,012	973	1,006	
Resevoir Alameda Creek Diversion Dam MG 15,323 14,490					
${ }_{\text {l }}^{\text {Inflow }}$ To Calaveras Reservoir	MG MG	4,197 1,316	4,197 1,730	4,197 1,163	
Accretion	MG	625	625	625	
From ACDD	mg	2,881	2,467	3,034	
From Calaveras Dam	mG	3,660	4,167	3,768	
SVWTP Total From Calaveras	MG	13,662	15,738	15,938	
From Calaveras	MG	9,013	8,244	8,068	
From San Antonio From SJPL	mg	1,693	2,628	1,906	
From SJPL From Recapture	MG	2,956	3,329	4,070	
From Recapture SVWTP Total MGD	mG	0	1,538	1,893	
SVWTP Total MGD SVWTP Max MGD	MGD	37	43	44	
SVWTP Max MGD SVWTP Min MGD	MGD	120	158	158	
SVWTP Min MGD	MGD	20	20	20	

APPENDIX O2

Table 1-2
Summary of Modeling Results (Part 2/2)

| | | Baseline |
| :--- | :---: | :---: | :---: | :---: |
| HH/LSM Simulation Results | | |
| | | |
| | | |

Notes for Table 1-1 and Table 1-2

1. Baseline condition represents the existing conditions at the time of NOP publication in September 2005. This is the baseline used to assess WSIP program impacts and impact significance. This setting is indicative of DSOD restrictions on Calaveras and Crystal Springs Reservoirs.
2. N / A
3. These scenarios represent CEQA alternatives that vary from the WSIP on key components in a manner expected to avoid or reduce potentially significant effects of the proposed program.
4. The time horizon for the setting of the scenario. The baseline condition scenario is depicted for recent conditions, while the proposed WSIP, variants, and alternatives are depicted for the future at full buildout and implementation (i.e., conditions in the year 2030).
5. HH/LSM simulation study name.
6. The customer purchase request (demand) information is based on the demand and request studies prepared by the SFPUC in coordination with the wholesale customers. This demand on the regional water system includes both the SFPUC retail customers and wholesale customers. The current (2005) average annual demand is 265 mgd and the projected 2030 average annual demand is 300 mgd , assuming the SFPUC adopts the updated wholesale customer purchase requests as part of renewing the Master Sales Agreement with these customers (due in 2009).
7. Certain scenarios include development of additional water supply from a combination of recycled water projects, groundwater projects, and conservation, utilized every year and not subject to reduction during drought.
8. The average annual demand for supplies from the combination of SFPUC local watershed, Tuolumne River and programs not included in the regional water conservation, recycling, and groundwater programs shown.
9. Modeled results for SFPUC deliveries, with supplies added for regional water conservation, recycling, and groundwater programs. Total deliveries and supply will be less than full customer purchase requests due to rationing in some years.
10. Shows only the features that affect hydrologic results of the system operation simulations. Additional projects are included in the WSIP, variants and alternatives.
11. Illustrates the frequency and severity of water supply action or the severity of systemwide rationing. Only years when variable water supply component is implemented or rationing occurs are shown. "DD" illustrates the shortage results for years included in the prospective drought period of the SFPUC design drought. These years contribute to establishing system operation protocols but are not included in the hydrologic assessment analyses.
12. Rationing policy cap: The SFPUC WSIP level of service goal is to maintain rationing on the regional system at no more than 20% during any one year of the drought. Some alternatives do not achieve this level of service goal. Performance is indicated for the design drought ("DD") sequence and for the "Historical" hydrologic sequence.
13. Water supply elements develop water in different amounts from year-to-year, and in some instances only develop water during dry years. This information is provided to illustrate a comparison between local watershed supplies, Tuolumne River supplies and other identifiable water supplies used to meet system purchase requests. Values are stated in units of average annual quantities during the simulated historical sequence.
14. Results from HH/LSM analysis of each scenario. Values represent the average annual production of each element of supply during the design drought period.
15. Simplified calculation of system deliveries during the SFPUC design drought. The value represents the application of systemwide shortages to the demand level being met with SFPUC local watershed, Tuolumne River, and other developed supplies and does not include supplies from regional water conservation, recycled water or groundwater projects. Average value may be slightly misstated (up to 3 mgd) due to metric of analysis that does not account for differences in residual storage between studies. "Nominal" Firm Yield represents the yield of each scenario after adjustment for minor residual storage differences.
16. Supplemental releases from Calaveras Reservoir for fisheries (1997 CDFG MOU) of up to 6,300 acre-feet per year and the Alameda Creek recapture facility project are tied to implementation of the Calaveras Dam Replacement project (SV-2). When the dam is replaced and capacity restored, the flow release and recapture will both occur. The release requirement is based on supplementing other occurring flows below Calaveras Reservoir, sometimes not requiring the full 6,300 acre-feet.
17. SFPUC actions are assumed to not change MID/TID diversions so as to isolate and possibly overstate the WSIP's effects on the Tuolumne River below La Grange Dam. The Districts' diversions are assumed to be constant among the scenarios to provide comparable results of WSIP-alone effects. The exception is for the Modified WSIP Alternative, in which the MID/TID diversion is reduced by the amount of SFPUC transfer.
18. Participation in the San Joaquin River Agreement is assumed. Although the agreement expires after 2010, it is assumed that a subsequent similar agreement or requirement of the Districts will occur. The HH/LSM does not explicitly model the Districts' participation in the agreement; however, their participation if modeled would result in only minor differences in results and would not change impact conclusions.
19. From $\mathrm{HH} / \mathrm{LSM}$ results for modeling the SFPUC design drought period.

APPENDIX O2

2. CEQA Alternative - Modified WSIP

The Modified WSIP Alternative would implement all of the proposed WSIP facility improvement projects, but differs in that it would include measures to reduce or avoid impacts that are associated with implementing the WSIP. The measures being considered are:

- Demand reduction of an additional 10 mgd (all years) through recycled water, groundwater, and conservation projects within the wholesale customer service area
- Restricted reservoir levels at Crystal Springs Reservoir
- Bypass of an amount of flow to Alameda Creek at the Alameda Creek Diversion Dam
- Use of conserved water for the Turlock Irrigation District/Modesto Irrigation District (TID/MID) and/or other water agency transfer to the SFPUC
- Use of Pilarcitos Reservoir storage for maintenance of summer flows below Pilarcitos Dam

There would be an increase in customer demand, from 265 mgd in 2005 to 300 mgd in 2030. With the Modified WSIP Alternative, the increase would be met in part through additional water conservation, water recycling, and groundwater programs beyond those already assumed in the 2030 demand projections. A total of 10 mgd of the demand is assumed to be met through regional recycled water, groundwater, and conservation projects within the regional service area but outside of San Francisco. These projects are in addition to the 10 mgd of groundwater development, recycled water projects, and conservation in San Francisco included in the WSIP and also incorporated into this alternative. This alternative would result in an average annual net demand on the regional system of 280 mgd , compared to a net demand of 290 mgd for the WSIP setting and 265 mgd for the base setting. The net increase in water demand from the regional system would be served through additional Tuolumne River diversions, including a water transfer with the TID/MID similar to the proposed program, increased use of local watershed supplies from restoration of Calaveras Reservoir storage, water associated with restoration of Crystal Springs Reservoir, and implementation of the Westside Basin Groundwater Program.

The restricted operation of Crystal Springs Reservoir involves construction of the dam spillway at elevation 291.8 feet (modeled capacity of 21.15 billion gallons, the same as the proposed program), but operation of the reservoir with a normal maximum water surface elevation of 287.8 feet (modeled capacity of 20.28 billion gallons). The winter operation of the reservoir would provide a 2-billion-gallon storage buffer below the restricted elevation objective. This measure is intended to reduce or avoid inundation impacts of higher reservoir water surface elevations.

The Alameda Creek Diversion Dam (ACDD) bypass measure assumes the passage of up to 10 cfs or inflow, whichever is less, during the months of December through April. It is assumed that this flow to Alameda Creek below the diversion dam would be recaptured from Alameda Creek below the confluence with Calaveras Creek when the flow is utilized to meet 1997 CDFG MOU requirements. The measure is intended to reduce or avoid impacts of reducing winter and spring flows below the ACDD.

It is assumed that the transfer of water to the SFPUC would be developed through water conservation in the service areas of TID/MID and/or other water agency that would in effect reduce the TID/MID diversion of water from Don Pedro Reservoir. The measure is intended to reduce or avoid the impacts of reducing flows in the Tuolumne River below La Grange Dam.

The Pilarcitos Reservoir measure assumes the occasional use (extraction) of water from the reservoir pool below the invert of the spillway outlet at Pilarcitos Dam to maintain flow in Pilarcitos Creek below Pilarcitos Dam during July through September. The release would also maintain deliveries to Coastside CWD from the Pilarcitos Creek watershed during those months. The measure is intended to reduce or avoid the impacts associated with reduced releases to the creek during summer months.

2.1 Water Deliveries and Drought Response Actions

Compared to the WSIP setting, the regional system's sources are required to serve a net 280 mgd demand (300 mgd purchase request less 10 mgd of groundwater development, recycled water projects, and conservation and 10 mgd of programs outside of San Francisco) instead of a net 290 mgd demand.

APPENDIX O2

As part of the formulation of this alternative, the water transfer from TID/MID was sized to provide the same frequency and severity of water shortages (percentage-wise) for the alternative as that occurring in the WSIP setting during the design drought, although systemwide water deliveries are a net 280 mgd in the alternative setting as compared to the WSIP setting delivery of a net 290 mgd . This objective required the water transfer to be sized at 19,600 acre-feet per year compared to 29,350 acre-feet per year in the WSIP setting. Factors that change the size of the transfer include the net demand, the change in maximum storage capacity at Crystal Springs Reservoir, and reservoir evaporation. The most substantial factors are net demand and the storage at Crystal Springs Reservoir. With a water supply formulated about comparable to that provided for the WSIP setting (only proportionately smaller for a lesser demand), the implementation of rationing and the severity of rationing from the SFPUC system during drought periods would be the same. Table 1-1 illustrates the comparison of the drought response actions for the proposed program and the alternative. Figure 2.1-1 illustrates the occurrence of drought response actions for the simulated 82 -year historical period (1921-2002) for the WSIP and Modified WSIP settings.

Figure 2.1-1
Drought Response Actions - WSIP and Modified WSIP

In Figure 2.1-1, years with bars showing a "1" or greater level of action indicate periods when a supplemental water supply action is initiated. In both settings, the water supply action is the use of the Westside Basin Groundwater Program to supplement SFPUC water deliveries. Also occurring in both settings is the water transfer supplemental supply from TID/MID. An action level greater than " 1 " indicates the imposition of delivery shortages (rationing) for SFPUC customers. SFPUC customers would experience the same frequency and severity of shortages (percentage-wise) during the design drought in both settings, and the frequency of shortage in other drought periods would the same. The triggering of the Westside Basin Groundwater Program supplemental supply occurred in one less year in comparison to the proposed program.

The same form of information is shown in Figure 2.1-2 for the comparison between the alternative and the base settings. There is not a level 1 action in the base setting. Without supplemental resources, the existing system only has delivery shortage measures available to cope with drought. In the base setting, the shortage measure is imposed during level 2 (10 percent) and level 3 (20 percent). These percentages of shortage are applied to both the alternative and the base settings for these action levels. During this simulation period, rationing does not need to exceed 20 percent in either setting; however, in the alternative setting, the occurrence of additional water supplies lessens the frequency and severity of water delivery shortages.

Not illustrated in Figure 2.1-2 but shown in Table 1-1 are the delivery shortages anticipated during the entire SFPUC design drought. During the design drought, the base setting does not have a viable operation without exceeding the 20 percent shortage level. The base setting exceeds the 20 percent shortage level (requires 25 percent rationing) during the last 18 months of the design drought. The alternative would viably provide deliveries without exceeding the 20 percent shortage level.

APPENDIX O2

Figure 2.1-2
Drought Response Actions - Base and Modified WSIP

The difference in water deliveries between the proposed program and the alternative is shown chronologically for the 82-year simulation in Table 2.1-1. There would be less water delivered to the region by the SFPUC in all years, a result of serving a lesser net demand of 280 mgd instead of 290 mgd .

Comparing the alternative setting to the base setting, Table 2.1-2 illustrates the difference in water deliveries between the two settings. The increases in deliveries under the alternative setting occur due to the increase in net demand served by the regional system (280 mgd instead of 265 mgd) and an improvement in water delivery reliability that reduces the severity of water shortages during several drought periods.

2.2 Diversions from the Tuolumne River

The metric for illustrating the SFPUC diversions from the Tuolumne River Basin (Tuolumne) is the flow through the San Joaquin Pipeline (SJPL). Inherent in this alternative is a net water demand that is less than the demand served by the proposed program but greater than the demand served under the base condition. Table 2.2-1 illustrates the difference in diversions to the SJPL between the proposed program and the alternative settings. In both settings, the conveyance capacity of the SJPL is increased compared to the base setting. During the summer, the SJPL would essentially operate at the same maximum rate in both the alternative and WSIP settings to minimize the drawdown of Bay Area reservoir storage. A few exceptions occur during the summer due to differences in operations for the net demand served. Overall, compared to the WSIP setting, the alternative setting would divert less water from the Tuolumne.

Table 2.2-2 illustrates the difference in diversions to the SJPL between the alternative and base settings. Evident in the operation is the increase in summer diversions associated with an increase in the conveyance capacity of the SJPL. As described above, with the increase in SJPL conveyance capacity, summer diversions would increase to retain storage in the Bay Area reservoirs. With the increase in summer diversions to the SJPL and the retention of storage in the Bay Area reservoirs, there would at times be reduced diversions during the late summer and fall as less Tuolumne water would be needed to replenish the Bay Area reservoirs. The differences in December diversions are largely the result of maintenance occurring in the alternative setting (lessening available conveyance capacity) that does not occur in the base setting. The increased diversions during the winter and spring result from the need to replenish Bay Area reservoir storage after the maintenance and then top off Bay Area reservoir storage prior to summer. There would be an overall increase in average annual diversions to the SJPL in the alternative setting associated with the increase in net demand and the improvement in water delivery reliability.

Table 2.2-3 illustrates the average monthly diversions through the SJPL by year type for the 82-year simulation for the proposed program and the alternative settings and the difference between the two settings. Table 2.2-4 shows the same information for the alternative and base settings.

Table 2.1-1
Difference in Total System-wide Delivery (MG)

Table 2.1-2
Difference in Total System-wide Delivery (MG)

Difference	Sys	,							Modified WSIP minus Base				
Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
1921	488	359	253	191	244	349	427	547	618	730	686	577	5,468
1922	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1923	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1924	488	359	253	191	244	349	427	547	618	1,932	1,853	1,546	8,807
1925	1,305	946	686	512	676	1,017	1,284	1,576	618	730	686	577	10,613
1926	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1927	488	359	253	191	244	349	427	547	618	729	686	577	5,468
1928	488	359	253	191	244	349	427	547	618	729	686	577	5,468
1929	488	359	253	191	244	349	427	547	618	730	686	577	5,468
1930	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1931	488	359	253	191	244	349	427	547	618	1,640	1,587	1,392	8,095
1932	1,253	1,025	876	777	824	1,067	1,212	1,408	1,508	729	686	577	11,943
1933	488	359	253	191	244	349	427	547	618	729	686	577	5,468
1934	488	359	253	191	244	349	427	547	618	1,932	1,853	1,546	8,806
1935	1,305	946	686	512	676	1,017	1,284	1,576	618	729	686	577	10,613
1936	488	359	253	191	244	349	427	547	618	729	686	577	5,468
1937	488	359	253	191	244	349	427	547	618	729	686	577	5,468
1938	488	359	253	191	244	349	427	547	618	730	686	577	5,468
1939	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1940	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1941	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1942	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1943	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1944	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1945	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1946	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1947	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1948	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1949	488	359	253	191	244	349	427	547	618	729	686	577	5,468
1950	488	359	253	191	244	349	427	547	618	730	686	577	5,468
1951	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1952	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1953	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1954	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1955	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1956	488	359	253	191	244	349	427	547	618	729	686	577	5,468
1957	488	359	253	191	244	349	427	547	618	730	686	577	5,468
1958	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1959	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1960	488	359	253	191	244	349	427	547	618	1,932	1,853	1,546	8,807
1961	1,305	946	686	512	676	1,017	1,284	1,576	1,760	1,640	1,587	1,392	14,381
1962	1,253	1,025	876	777	824	1,067	1,212	1,408	1,508	729	686	577	11,943
1963	488	359	253	191	244	349	427	547	618	729	686	577	5,468
1964	488	359	253	191	244	349	427	547	618	730	686	577	5,468
1965	488	359	253	191	244	349	427	547	618	729	686	577	5,468
1966	488	359	253	191	244	349	427	547	618	730	686	577	5,468
1967	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1968	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1969	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1970	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1971	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1972	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1973	488	359	253	191	244	349	427	547	618	729	686	577	5,468
1974	488	359	253	191	244	349	427	547	618	730	686	577	5,468
1975	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1976	488	359	253	191	244	349	427	547	618	1,932	1,853	1,546	8,807
1977	1,305	946	686	512	676	1,017	1,284	1,576	1,760	1,640	1,587	1,392	14,381
1978	1,253	1,025	876	777	824	1,067	1,212	1,408	-602	729	686	577	9,832
1979	488	359	253	191	244	349	427	547	618	729	686	577	5,468
1980	488	359	253	191	244	349	427	547	618	730	686	577	5,468
1981	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1982	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1983	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1984	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1985	488	359	253	191	244	349	427	547	618	730	686	577	5,469
1986	488	359	9	191	244	349	427	547	618	729	686	577	5,224
1987	488	359	253	191	244	349	427	547	618	1,932	1,853	1,546	8,806
1988	1,305	946	686	512	676	1,017	1,284	1,576	1,760	1,640	1,587	1,392	14,381
1989	1,253	1,025	876	777	824	1,067	1,212	1,408	1,508	1,640	1,587	1,392	14,569
1990	1,253	1,025	876	777	824	1,067	1,212	1,408	1,508	556	526	451	11,483
1991	385	302	226	185	213	289	346	430	478	1,640	1,587	1,392	7,473
1992	1,253	1,025	876	777	824	1,067	1,212	1,408	1,508	556	526	451	11,483
1993	385	302	226	185	213	289	346	430	-1,632	729	686	577	2,736
1994	488	359	253	191	244	349	427	547	618	1,932	1,853	1,546	8,806
1995	1,305	946	686	512	676	1,017	427	547	618	729	686	577	8,727
1996	488	359	253	191	244	349	427	547	618	729	686	577	5,468
1997	488	359	253	191	244	349	427	547	618	729	686	577	5,468
1998	488	359	253	191	244	349	427	547	618	729	686	577	5,468
1999	488	359	253	191	244	349	427	547	618	729	686	577	5,468
2000	488	359	253	191	244	349	427	547	618	729	686	577	5,468
2001	488	359	253	191	244	349	427	547	618	730	686	577	5,468
2002	488	359	253	191	244	349	427	547	618	730	686	577	5,469
Avg (21-02)	601	449	327	258	317	449	535	670	670	880	833	704	6,693

APPENDIX O2

Table 2.2-1
Difference in Total San Joaquin Pipeline (Acre-feet)

iff	San			t)							WSIP	S WSIP		
Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total	FY Total
1921	-952	-1,841	0	0	0	-952	0	0	0	0	0	0	-3,745	-3,745
1922	-5,708	-2,762	-1,903	0	0	0	-5,524	0	0	0	0	0	-15,897	-15,897
1923	-2,854	0	0	0	0	-1,047	-3,038	0	0	0	0	0	-6,939	-6,939
1924	-3,805	-921	-1,902	-1,903	-1,719	0	0	0	0	0	0	0	-10,250	-10,250
1925		0	0	0	0	0	0	0	0	0	0	0	0	0
1926	0	0	0	-3,901	-9,452	0	-4,880	0	0	0	0	-1,197	-19,430	-18,233
1927	-4,757	-1,841	-952	-952	0	-3,805	-3,683	0	0	0	0	0	-15,990	-17,187
1928	-1,047	-921	0	0	0	-3,045	-5,524	0	0	0	0	0	-10,537	-10,537
1929	-1,807	-1,841	0	0	0	0	0	0	0	0	0	0	-3,648	-3,648
1930	-1,237	0	0	0	0	0	0	0	0	0	0	0	-1,237	-1,237
1931	0	-2,854	0	-5,803	-5,242	0	0	0	0	0	0	-4,880	-18,779	-13,899
1932	-5,708	-2,762	-1,903	-1,903	0	-1,902	-2,118	-3,140	-3,038	0	0	0	-22,474	-27,354
1933	476	0	0	-1,902	-1,719	0	0	0	0	0	0	0	-3,145	-3,145
1934	0	0	-2,949	-2,854	-2,578	0	0	0	0	0	0	0	-8,381	-8,381
1935	-1,237	0	0	0	0	0	-1,197	-2,189	-2,118	0	0	0	-6,741	-6,741
1936	-5,043	-4,603	0	-2,854	0	-2,949	-2,118	0	0	0	0	0	-17,567	-17,567
1937	-3,806	-1,841	-1,902	0	0	-951	-4,604	0	0	0	0	0	-13,104	-13,104
1938	-1,903	0	0	-1,903	0	0	-4,603	-1,237	-1,197	0	0	0	-10,843	-10,843
1939		0	0	0	0	0	0	0	0	0	0	0	0	0
1940	0	0	0	0	-5,328	-5,709	-5,524	-1,237	-1,197	0	0	0	-18,995	-18,995
1941	0	0	0	0	0	0	0	-952	-921	0	0	0	-1,873	-1,873
1942	-1,332	0	-1,712	0	0	0	-5,524	0	0	0	0	0	-8,568	-8,568
1943	-1,903	-1,841	0	0	0	-1,142	-3,867	-1,237	-1,197	0	0	0	-11,187	-11,187
1944	-1,902	0	-952	0	0	-2,949	0	0	0	0	0	0	-5,803	-5,803
1945	-4,281	0	0	0	-4,297	0	0	0	0	0	0	0	-8,578	-8,578
1946	-5,043	-2,762	0	0	0	0	0	0	0	0	0	0	-7,805	-7,805
1947	-5,708	-4,603	-952	-1,903	-1,719	0	0	0	0	0	0	0	-14,885	-14,885
1948	-1,237	-1,013	0	-4,756	-2,578	0	0	0	0	0	0	0	-9,584	-9,584
1949	-2,189	-1,013	-3,806	-1,903	-1,719	-2,854	-2,578	-1,237	-1,197	0	0	0	-18,496	-18,496
1950	-1,903	0	0	0	0	0	0	0	0	0	0	0	-1,903	-1,903
1951	0	-3,683	0	0	0	-4,757	-1,197	-1,237	-1,197	0	0	0	-12,071	-12,071
1952	-2,949	-921	-2,663	0	0	0	-5,524	-1,237	-1,197	0	0	0	-14,491	-14,491
1953	-1,902	0	0	0	0	-2,949	0	-1,237	-1,197	0	0	0	-7,285	-7,285
1954	-2,949	-921	-952	0	-860	-1,047	-2,578	0	0	0	0	0	-9,307	-9,307
1955	-3,805	0	0	0	0	0	0	0	0	0	0	0	-3,805	-3,805
1956		0	0	0	0	0	-2,578	-1,237	-1,197	0	0	0	-5,012	-5,012
1957	-1,047	-921	-1,902	-1,903	0	0	0	0	0	0	0	0	-5,773	-5,773
1958	-2,759	-2,762	0	-2,855	0	0	0	-1,047	-1,013	0	0	0	-10,436	-10,436
1959	0	-921	0	0	0	0	0	0	0	0	0	0	-921	-921
1960	-3,140	0	0	0	0	0	0	0	0	0	0	0	-3,140	-3,140
1961	0	0	0	-1,047	-3,523	0	0	0	0	0	0	-4,880	-9,450	-4,570
1962	-6,945	-5,616	-952	-3,805	-1,031	-2,854	-2,118	-3,996	-3,867	0	0	0	-31,184	-36,064
1963	1,807	-1,841	0	0	0	-1,902	-5,524	-1,902	-1,841	0	0	0	-11,203	-11,203
1964	0	-921	0	0	0	0	0	0	0	0	0	0	-921	-921
1965	0	0	0	-5,708	-5,156	0	-8,286	0	0	0	0	0	-19,150	-19,150
1966	-1,047	0	0	-1,903	-1,719	0	0	0	0	0	0	0	-4,669	-4,669
1967	0	-3,775	-4,756	0	0	0	-6,445	-952	-921	0	0	0	-16,849	-16,849
1968	-1,237	0	0	0	0	0	0	0	0	0	0	0	-1,237	-1,237
1969	-3,996	-4,603	-1,903	0	0	-951	-4,880	0	0	0	0	0	-16,333	-16,333
1970	-952	0	0	-1,903	-1,719	-1,047	0	0	0	0	0	0	-5,621	-5,621
1971	-4,281	-1,841	0	0	0	0	0	0	0	0	0	0	-6,122	-6,122
1972	0	-5,616	-4,757	-1,903	-1,719	0	0	0	0	0	0	0	-13,995	-13,995
1973	-1,237	-3,775	0	0	0	0	-4,880	-1,237	-1,197	0	0	0	-12,326	-12,326
1974	0	0	0	0	0	-6,659	-4,603	-1,237	-1,197	0	0	0	-13,696	-13,696
1975	0	0	0	0	-1,719	-1,142	-5,524	-1,237	-1,197	0	0	0	-10,819	-10,819
1976	-952	0	0	0	0	0	0	0	0	0	0	0	-952	-952
1977	0	-1,013	-4,756	-2,855	-2,578	0	0	0	0	1,902	1,902	1,841	-5,557	-11,202
1978	1,902	2,762	0	-3,045	-5,156	-10,464	-7,365	-1,047	-1,013	0	0	0	-23,426	-17,781
1979	0	-921	-1,902	0	0	-1,902	0	0	0	0	0	0	-4,725	-4,725
1980	-3,996	0	0	-2,855	0	-4,947	-2,578	0	0	0	0	0	-14,376	-14,376
1981	-1,902	-921	0	-1,902	-1,718	0	0	0	0	0	0	0	-6,443	-6,443
1982	-5,043	-3,682	-1,902		0	0	0	-1,902	-1,841	0	0	0	-14,370	-14,370
1983			-951	0	0	0	-4,787	-1,903	-1,841	0	0	0	-9,482	-9,482
1984		-921	0	0	0	0	0	0	0	0	0	0	-921	-921
1985	-2,189	0	0			0	0	0	0	0	0	0	-2,189	-2,189
1986		0	9	-2,949	-3,437	-7,610	-8,286	-1,237	-1,197	0	0	0	-24,707	-24,707
1987	0	-921	-1,902		0	0	0	0	0	0	0	0	-2,823	-2,823
1988		-1,013		-4,756	-2,578	0	0	0	0	0	0	-4,880	-13,227	-8,347
1989	-1,902	-1,841	-1,903	0	0	0	0	-2,664	-2,578	-1,237	-1,427	0	-13,552	-15,768
1990	0	0	0	0	0	0	0	0	0	-3,996	-2,854	-1,841	-8,691	-2,664
1991	0	-1,841	-523	0	0	-2,854	-4,880	-1,902	-1,841	-1,237	951	921	-13,206	-22,532
1992	1,902	-921	-1,903	0	0	-1,902	-2,118	-3,140	-3,038	-1,047	1,902	1,841	-8,424	-10,485
1993	1,903	-1,841	-523	0	0	0	-5,524	-952	-921	0	0	0	-7,858	-5,162
1994	0	-921	0	-1,903	-1,719	0	0	0	0	0	0	0	-4,543	-4,543
1995	-1,237	0	0	-4,947	-4,468	0	-7,365	-856	-829	0	0	0	-19,702	-19,702
1996		-921	0	0	0	0	-2,118	0	0	0	0	0	-3,039	-3,039
1997	-3,805	-921	0	0	0	0	0	0	0	0	0	0	-4,726	-4,726
1998	-3,140	-3,683	0	0	0	-951	-6,444	-1,047	-1,013	0	0	0	-16,278	-16,278
1999	-1,902	0	-952	0	0	-1,903	-7,365	0	0	0	0	0	-12,122	-12,122
2000	-1,902	0	0	0	-860	-2,854	0	0	0	0	0	0	-5,616	-5,616
2001	-3,806	-2,762	0	-952	0	-3,901	0	0	0	0	0	0	-11,421	-11,421
2002	-3,806	-921	-1,903	-1,902	-1,718	0	0	0	0	0	0	0	-10,250	-10,250
Avg (21-02)	-1,600	-1,155	-682	-995	-952	-1,096	-2,046	-542	-524	-68	6	-159	-9,815	-9,815

Table 2.2-2
Difference in Total San Joaquin Pipeline (Acre-feet)

Difference in	San	quin Pip	e (A	et)							WSIP	Base		
Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total	FY Total
1921	-952	-2,762	0	0	0	11,416	2,118	2,189	2,118	2,189	2,189	2,118	20,623	23,385
1922	-4,756	-921	-3,805	952	0	0	1,841	5,043	4,880	2,189	2,189	2,118	9,730	9,730
1923	-2,854	-2,762	0	0	0	14,270	-920	2,189	2,118	2,189	2,189	2,118	18,537	18,537
1924	-4,756	-921	0	-2,855	-2,578	5,803	2,118	2,189	2,118	2,189	2,189	2,118	7,614	7,614
1925	2,189	-19,334	-19,979	5,803	17,272	11,512	2,118	2,189	2,118	2,189	2,189	2,118	10,384	10,384
1926	5,043	5,616	-7,088	1,902	0	15,317	0	2,189	2,118	2,189	2,189	921	30,396	31,593
1927	-2,854	-2,762	-952	3,805	0	2,854	-921	2,189	2,118	2,189	2,189	2,118	9,973	8,776
1928	1,902	-921	-2,331	3,805	4,297	2,663	-921	2,189	2,118	2,189	2,189	2,118	19,297	19,297
1929	2,949	0	1,902	1,902	1,718	5,803	2,118	2,189	2,118	2,189	2,189	2,118	27,195	27,195
1930	952	-19,334	-19,979	5,803	9,538	11,512	2,118	2,189	2,118	2,189	2,189	2,118	1,413	1,413
1931	2,189	2,762	-7,088	0	0	5,803	2,118	2,189	2,118	2,189	2,189	1,841	16,310	16,587
1932	2,854	0	3,805	3,805	0	13,510	2,762	3,805	3,683	2,189	2,189	2,118	40,720	40,443
1933	-475	0	-7,088	5,709	5,156	5,803	2,118	2,189	2,118	2,189	2,189	2,118	22,026	22,026
1934	2,189	5,616	2,854	3,805	3,437	5,803	2,118	2,189	2,118	2,189	2,189	2,118	36,625	36,625
1935	3,806	-19,334	-19,979	19,122	17,272	10,560	8,286	5,708	5,524	2,189	2,189	2,118	37,461	37,461
1936	-2,854	0	-7,088	4,757	0	12,368	0	2,189	2,118	2,189	2,189	2,118	17,986	17,986
1937	0	0	0	3,805	0	0	1,841	5,043	4,880	2,189	2,189	2,118	22,065	22,065
1938	0	0	0	3,805	0	0	921	3,806	3,683	2,189	2,189	2,118	18,711	18,711
1939	-1,902	-921	-2,855	2,854	2,578	5,803	2,118	2,189	2,118	2,189	2,189	2,118	18,478	18,478
1940	2,189	-19,334	-19,979	15,317	2,406	7,610	2,762	3,806	3,683	2,189	2,189	2,118	4,956	4,956
1941	-1,902	-921	0	0	0	0	0	0	0	2,189	2,189	2,118	3,673	3,673
1942	1,047	0	-2,854	0	0	2,663	0	2,854	2,762	2,189	2,189	2,118	12,968	12,968
1943	0	-2,762	-7,088	0	0	2,663	2,854	952	921	2,189	2,189	2,118	4,036	4,036
1944	0	-921	-952	1,902	7,046	12,368	2,118	2,189	2,118	2,189	2,189	2,118	32,364	32,364
1945	-4,756	-19,334	-19,979	5,803	9,452	15,317	2,118	2,189	2,118	2,189	2,189	2,118	-576	-576
1946	0	-921	0	0	0	10,560	2,118	2,189	2,118	2,189	2,189	2,118	22,560	22,560
1947	-4,756	-2,762	-952	-2,855	1,718	10,560	2,118	2,189	2,118	2,189	2,189	2,118	13,874	13,874
1948	952	4,603	-7,088	0	0	5,803	2,118	2,189	2,118	2,189	2,189	2,118	17,191	17,191
1949	0	4,603	-952	-2,855	-2,578	-952	-460	952	921	2,189	2,189	2,118	5,175	5,175
1950	1,902	-19,334	-19,979	16,459	16,413	5,803	2,118	2,189	2,118	2,189	2,189	2,118	14,185	14,185
1951	2,189	3,682	0	0	0	3,805	921	952	921	2,189	2,189	2,118	18,966	18,966
1952	0	-921	-951	0	0	0	3,682	952	921	2,189	2,189	2,118	10,179	10,179
1953	0	-921	0	0	0	12,368	2,118	952	921	2,189	2,189	2,118	21,934	21,934
1954	-4,756	-921	-952	2,854	4,468	9,513	-460	2,189	2,118	2,189	2,189	2,118	20,549	20,549
1955	-4,756	-19,334	-15,222	16,459	14,866	5,803	2,118	2,189	2,118	2,189	2,189	2,118	10,737	10,737
1956	2,189	5,616	0	0	0	2,663	-460	952	921	2,189	2,189	2,118	18,377	18,377
1957	1,902	-921	0	1,902	7,046	10,560	2,118	2,189	2,118	2,189	2,189	2,118	33,410	33,410
1958	-1,807	0	-7,088	6,659	0	0	0	0	0	2,189	2,189	2,118	4,260	4,260
1959	0	-921	0	2,854	0	15,317	2,118	2,189	2,118	2,189	2,189	2,118	30,171	30,171
1960	-951	-19,334	-19,979	5,803	10,398	5,803	2,118	2,189	2,118	2,189	2,189	2,118	-5,339	-5,339
1961	2,189	5,616	-7,088	4,756	6,015	5,803	2,118	2,189	2,118	2,189	5,043	4,603	35,551	30,212
1962	2,854	4,603	3,805	0	2,406	15,221	5,524	3,901	3,775	2,189	2,189	2,118	48,585	53,924
1963	4,756	0	-7,088	0	0	5,708	0	0	0	2,189	2,189	2,118	9,872	9,872
1964	2,189	-921	0	7,611	6,875	5,803	2,118	2,189	2,118	2,189	2,189	2,118	34,478	34,478
1965	2,189	-19,334	-14,270	0	0	11,512	4,603	952	921	2,189	2,189	2,118	-6,931	-6,931
1966	1,902	-2,762	-1,379	7,801	7,046	5,803	2,118	2,189	2,118	2,189	2,189	2,118	31,332	31,332
1967	2,189	1,841	-7,611	0	0	0	0	-952	-921	2,189	2,189	2,118	1,042	1,042
1968	952	0	-7,088	8,562	7,734	5,803	2,118	2,189	2,118	2,189	2,189	2,118	28,884	28,884
1969	-1,807	0	-2,855	0	0	0	2,762	2,189	2,118	2,189	2,189	2,118	8,903	8,903
1970	-952	-19,334	-19,979	10,464	9,452	18,075	2,118	2,189	2,118	2,189	2,189	2,118	10,647	10,647
1971	-1,902	-2,762	0	0	0	10,560	2,118	2,189	2,118	2,189	2,189	2,118	18,817	18,817
1972	2,189	0	-4,757	-2,855	1,718	5,803	2,118	2,189	2,118	2,189	2,189	2,118	15,019	15,019
1973	952	1,841	-7,088	0	0	0	1,841	952	921	2,189	2,189	2,118	5,915	5,915
1974	1,902	0	0	0	0	3,805	0	3,806	3,683	2,189	2,189	2,118	19,692	19,692
1975	-1,902	-19,334	-19,979	11,512	3,437	2,663	2,762	3,806	3,683	2,189	2,189	2,118	-6,856	-6,856
1976	-2,854	-921	-7,088	0	0	5,803	2,118	2,189	2,118	2,189	2,189	2,118	7,861	7,861
1977	5,043	4,603	0	-2,855	-2,578	5,803	2,118	2,189	2,118	-2,854	0	9,206	22,793	22,937
1978	9,513	1,841	-2,854	2,663	0	0	4,787	4,756	4,603	2,189	2,189	2,118	31,805	31,661
1979	-2,854	-921	0	2,854	0	9,514	2,118	2,189	2,118	2,189	2,189	2,118	21,514	21,514
1980	1,047	-19,334	-15,222	10,464	0	2,663	2,302	2,189	2,118	2,189	2,189	2,118	-7,277	-7,277
1981	0	-921	-7,088	5,708	5,156	11,512	2,118	2,189	2,118	2,189	2,189	2,118	27,288	27,288
1982	-2,854	-4,603	-1,902	0	0	0	0	0	0	2,189	2,189	2,118	-2,863	-2,863
1983	1,047	-2,762	0	0	0	0	0	2,854	2,762	2,189	2,189	2,118	10,397	10,397
1984	952	-5,524	0	0	0	5,803	2,118	2,189	2,118	2,189	2,189	2,118	14,152	14,152
1985	0	-19,334	-19,979	10,560	9,538	5,803	2,118	2,189	2,118	2,189	2,189	2,118	-491	-491
1986	2,189	5,616	9	2,854	0	0	-921	3,806	3,683	2,189	2,189	2,118	23,732	23,732
1987	0	-921	0	-952	-859	5,803	2,118	2,189	2,118	2,189	2,189	2,118	15,992	15,992
1988	5,043	4,603	-7,088	5,709	5,156	5,803	2,118	2,189	2,118	2,189	2,189	4,603	34,632	32,147
1989	2,854	0	2,854	2,854	2,578	5,803	2,118	2,379	2,302	3,806	2,379	7,365	37,292	32,723
1990	6,659	-19,334	-15,222	10,560	9,538	5,803	2,118	2,189	2,118	1,047	1,902	4,603	11,981	17,979
1991	3,805	-2,762	-2,854	0	0	7,611	0	952	921	952	4,756	2,762	16,143	15,225
1992	1,902	3,682	1,902	952	2,406	16,173	4,603	3,805	3,683	0	0	3,682	42,790	47,578
1993	3,805	-2,762	-1,902	0	0	0	-921	1,902	1,841	2,189	2,189	2,118	8,459	5,645
1994	-2,854	-921	0	-2,855	8,593	5,803	2,118	2,189	2,118	2,189	2,189	2,118	20,687	20,687
1995	3,806	-19,334	-19,979	2,663	2,406	0	1,841	1,047	1,013	2,189	2,189	2,118	-20,041	-20,041
1996	1,902	-921	-2,331	0	0	0	2,762	5,043	4,880	2,189	2,189	2,118	17,831	17,831
1997	-1,902	-921		0	0	10,465	2,118	2,189	2,118	2,189	2,189	2,118	20,563	20,563
1998	-951	-921	-7,088	0	0	0	4,604	2,854	2,762	2,189	2,189	4,880	10,518	7,756
1999	0	-921	-952	6,659	0	6,659	1,841	2,189	2,118	2,189	2,189	2,118	24,089	26,851
2000	0	-19,334	-19,979	15,317	6,874	13,319	2,118	2,189	2,118	2,189	2,189	2,118	9,118	9,118
2001	0	0	-7,088	6,659	8,593	11,416	2,118	2,189	2,118	2,189	2,189	2,118	32,501	32,501
2002	-2,854	-921	-3,805	4,757	4,297	10,560	2,118	2,189	2,118	2,189	2,189	2,118	24,955	24,955
Avg (21-02)	506	-3,677	-5,448	3,311	2,882	6,435	1,818	2,255	2,182	2,092	2,201	2,402	16,958	16,992

Table 2.2-3

Total San Joaquin Pipeline (Acre-feet)														
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total	FY Total
Wet	26,020	15,548	8,898	9,550	6,165	9,318	16,981	25,806	24,973	29,778	29,778	28,817	231,631	229,415
Above Normal	25,166	13,323	8,462	13,566	7,931	14,478	20,888	27,763	26,867	29,778	29,778	28,817	246,816	246,458
Normal	24,159	13,752	9,222	14,824	10,956	20,769	26,901	29,374	28,426	29,778	29,778	28,817	266,755	266,450
Below Normal	25,877	15,007	12,130	19,833	16,852	24,472	28,091	29,140	28,200	29,632	29,493	27,956	286,683	286,598
Dry	25,723	19,115	15,715	18,379	15,516	25,598	28,685	29,582	28,627	28,898	28,832	26,354	291,023	294,014
All Years	25,392	15,320	10,871	15,266	11,506	18,940	24,313	28,336	27,421	29,576	29,534	28,158	264,634	264,634
Total San Joaquin Pipeline (Acre-feet)														
(Average within Year Type - Grouped by Unimpaired Runoff at LaGrange) WSIP														
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total	FY Total
Wet	27,584	16,762	9,692	11,066	7,304	10,875	21,647	26,722	25,859	29,778	29,778	28,817	245,884	243,146
Above Normal	26,935	14,568	8,898	13,901	8,598	16,352	24,176	28,608	27,685	29,778	29,778	28,817	258,095	258,095
Normal	26,632	15,087	9,698	15,299	11,343	21,935	28,322	29,778	28,817	29,778	29,778	28,817	275,285	275,285
Below Normal	27,567	16,214	13,000	21,070	18,065	25,211	28,817	29,481	28,530	29,778	29,521	27,972	295,227	295,751
Dry	26,210	19,881	16,554	19,818	16,869	25,717	28,817	29,778	28,817	29,094	28,773	27,154	297,481	299,662
All Years	26,992	16,475	11,553	16,261	12,458	20,037	26,359	28,878	27,946	29,645	29,529	28,317	274,450	274,450
Difference in Total San Joaquin Pipeline (Acre-feet)														
(Average within Year Type - Grouped by Unimpaired Runoff at LaGrange) Modified WSIP minus WSIP														
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total	FY Total
Wet	-1,564	-1,214	-793	-1,516	-1,139	-1,558	-4,667	-916	-886	0	0	0	-14,252	-13,731
Above Normal	-1,768	-1,246	-437	-336	-667	-1,875	-3,287	-845	-818	0	0	0	-11,279	-11,636
Normal	-2,474	-1,335	-476	-476	-387	-1,166	-1,421	-404	-391	0	0	0	-8,529	-8,834
Below Normal	-1,690	-1,208	-870	-1,237	-1,213	-739	-726	-341	-330	-146	-28	-16	-8,544	-9,153
Dry	-488	-765	-838	-1,439	-1,353	-119	-132	-196	-190	-196	59	-800	-6,458	-5,648
All Years	-1,600	-1,155	-682	-995	-952	-1,096	-2,046	-542	-524	-68	6	-159	-9,815	-9,815

Table 2.2-4

Total San Joaquin Pipeline (Acre-feet)														
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total	FY Total
Wet	26,020	15,548	8,898	9,550	6,165	9,318	16,981	25,806	24,973	29,778	29,778	28,817	231,631	229,415
Above Normal	25,166	13,323	8,462	13,566	7,931	14,478	20,888	27,763	26,867	29,778	29,778	28,817	246,816	246,458
Normal	24,159	13,752	9,222	14,824	10,956	20,769	26,901	29,374	28,426	29,778	29,778	28,817	266,755	266,450
Below Normal	25,877	15,007	12,130	19,833	16,852	24,472	28,091	29,140	28,200	29,632	29,493	27,956	286,683	286,598
Dry	25,723	19,115	15,715	18,379	15,516	25,598	28,685	29,582	28,627	28,898	28,832	26,354	291,023	294,014
All Years	25,392	15,320	10,871	15,266	11,506	18,940	24,313	28,336	27,421	29,576	29,534	28,158	264,634	264,634
Total San Joaquin Pipeline (Acre-feet)														
(Average within	Type - G	ed by Uni	ired Run	LaGrang								Base		
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total	FY Total
Wet	24,854	19,046	14,449	7,730	6,015	7,611	15,398	23,962	23,189	27,589	27,589	26,526	223,960	222,101
Above Normal	25,015	18,522	14,830	9,346	6,015	8,831	19,117	25,015	24,208	27,589	27,589	26,699	232,776	232,343
Normal	24,616	19,046	14,865	10,691	6,864	11,060	25,145	27,054	26,181	27,589	27,589	26,699	247,400	246,589
Below Normal	25,239	19,334	18,748	15,927	11,585	16,789	26,374	27,085	26,212	27,421	27,141	25,562	267,417	267,585
Dry	24,676	19,046	19,087	15,995	12,621	18,195	26,411	27,292	26,411	27,232	26,757	23,247	266,970	269,749
All Years	24,886	18,997	16,405	11,955	8,624	12,505	22,496	26,081	25,239	27,485	27,334	25,756	247,763	247,729
Difference in Total San Joaquin Pipeline (Acre-feet)														
(Average within Year Type - Grouped by Unimpaired Runoff at LaGrange) Modified WSIP minus Base														
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total	FY Total
Wet	1,166	-3,499	-5,107	1,819	150	1,706	1,582	1,844	1,784	2,189	2,189	2,291	8,115	7,757
Above Normal	151	-5,199	-6,369	4,220	1,916	5,646	1,771	2,748	2,659	2,189	2,189	2,118	14,040	14,115
Normal	-458	-5,294	-5,643	4,132	4,092	9,710	1,755	2,320	2,245	2,189	2,189	2,118	19,355	19,862
Below Normal	638	-4,327	-6,618	3,906	5,267	7,683	1,717	2,055	1,988	2,211	2,351	2,394	19,266	19,014
Dry	1,047	69	-3,372	2,384	2,895	7,403	2,273	2,290	2,216	1,666	2,076	3,107	24,053	24,265
All Years	506	-3,677	-5,448	3,311	2,882	6,435	1,818	2,255	2,182	2,092	2,201	2,402	16,958	16,992

2.3 Hetch Hetchy Reservoir and Releases

Compared to the WSIP setting, the alternative setting draws less water from the Tuolumne due to the lesser demand. This circumstance leads to less draw from Hetch Hetchy Reservoir in the alternative setting in all years. Figure 2.3-1 illustrates a chronological trace of the simulation of Hetch Hetchy Reservoir storage and stream releases. Shown in Figure 2.3-1 are the results for the WSIP, Modified WSIP, and base settings. Supplementing the Figure 2.3-1 representation of Hetch Hetchy Reservoir storage are Table 2.3-1, Hetch Hetchy Reservoir Storage (Modified WSIP); Table 2.3-2, Hetch Hetchy Reservoir Storage (WSIP); and Table 2.3-3, Difference in Hetch Hetchy Reservoir Storage (Modified WSIP minus WSIP). Table 2.3-4 is provided to illustrate the difference in Hetch Hetchy Reservoir storage between the base and alternative settings.

Table 2.3-3 shows that, by the end of summer, storage in Hetch Hetchy Reservoir associated with the alternative setting would at times (about 20 percent of the years) be greater than the storage in the WSIP setting, albeit typically less than 5,000 acre-feet more in two-thirds of those years. In about one-third of the years, storage would be greater by 5,000 acre-feet or more. The relatively minor increases in storage are attributable to years when summer diversions would be the same in both settings (SJPL operating at maximum capacity) but less water would be diverted in the fall due to the lesser water demand. The larger increases in storage are associated with drought periods during which the differences in underlying demand and water delivery shortages between the WSIP and alternative settings are greater.

Figure 2.3-1

Hetch Hetchy Reservoir Storage and Stream Release

Table 2.3-1
Hetch Hetchy Reservoir Storage (Acre-feet)

etch Hetchy	vo	orage	(Acre-feet)								ied WSIP	
Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1921	272,117	267,600	245,425	237,477	184,880	151,635	155,378	272,083	360,400	360,400	326,811	291,828
1922	264,009	240,850	229,925	222,889	227,355	241,931	212,244	360,400	360,400	360,400	336,082	302,853
1923	276,771	259,318	265,395	272,108	277,250	269,581	244,936	360,400	360,400	360,400	333,186	304,241
1924	291,045	269,331	247,848	232,772	224,247	207,679	230,953	316,199	294,455	266,511	231,247	195,381
1925	164,353	176,388	189,425	172,356	183,982	197,973	217,942	360,400	360,400	356,465	334,210	301,427
1926	274,085	251,427	243,883	223,816	215,011	167,920	254,870	341,671	360,400	333,232	297,804	265,052
1927	240,402	240,834	241,471	237,633	265,210	288,103	348,469	360,400	360,400	360,400	333,718	301,231
1928	275,534	281,108	276,467	267,489	260,490	315,995	360,400	360,400	360,400	337,096	302,689	269,444
1929	240,564	217,758	200,750	183,877	171,934	170,901	186,458	350,991	360,400	348,102	314,426	281,237
1930	250,730	247,160	248,490	228,984	219,554	226,031	287,394	356,465	360,400	350,768	316,726	283,424
1931	252,998	231,531	217,838	200,068	188,024	180,141	221,426	313,697	310,427	280,515	245,249	215,920
1932	189,694	168,170	107,849	50,958	34,482	27,308	58,255	229,674	360,400	360,400	333,089	299,918
1933	269,682	248,173	233,407	214,696	199,250	168,700	155,172	190,490	360,400	360,400	326,593	293,382
1934	260,961	234,344	203,627	187,022	165,494	132,277	188,731	241,241	265,046	238,814	206,804	175,554
1935	146,803	160,526	173,314	112,695	76,273	42,113	101,853	260,501	360,400	360,400	331,788	299,322
1936	272,128	252,344	235,929	227,373	182,196	146,688	204,673	360,400	360,400	356,465	327,853	294,110
1937	266,299	244,805	224,465	203,469	160,719	111,931	113,680	358,909	360,400	360,400	327,212	292,471
1938	263,822	243,421	277,700	271,790	220,879	179,376	203,214	360,400	360,400	360,400	352,029	324,714
1939	312,466	304,668	294,282	283,636	277,502	290,985	360,400	360,400	360,400	332,157	299,492	270,327
1940	255,209	256,245	221,050	210,272	163,190	141,158	164,479	360,400	360,400	354,451	320,313	286,310
1941	260,678	241,118	232,444	166,634	122,924	89,103	82,492	312,086	360,400	360,400	341,291	309,048
1942	281,577	275,798	316,735	330,000	330,000	330,000	356,592	360,400	360,400	360,400	339,529	306,962
1943	279,067	279,524	286,435	310,865	327,956	330,000	360,400	360,400	360,400	360,400	334,820	303,090
1944	279,144	260,348	243,060	234,243	231,461	239,086	259,161	360,400	360,400	360,400	329,290	297,445
1945	272,731	289,623	306,527	291,374	261,135	200,352	208,439	331,150	360,400	360,400	334,928	303,168
1946	294,621	309,813	274,380	240,447	175,982	132,453	194,360	360,400	360,400	357,267	325,581	293,235
1947	273,292	269,800	268,501	261,131	261,603	271,410	320,357	360,400	356,592	332,847	297,991	265,329
1948	248,495	233,768	224,880	215,217	201,484	142,832	127,092	251,309	360,400	360,400	325,774	291,062
1949	259,625	233,526	214,785	198,641	175,769	111,718	158,012	291,712	356,592	336,040	301,328	268,173
1950	239,630	240,600	237,275	221,334	166,741	117,129	164,953	321,680	360,400	359,600	323,849	289,929
1951	259,038	330,000	330,000	273,739	223,537	195,259	223,591	349,555	360,400	360,400	326,780	293,203
1952	266,669	250,901	262,778	255,361	199,922	225,629	326,959	360,400	360,400	360,400	351,651	322,211
1953	296,329	275,128	274,206	293,261	298,723	298,998	360,400	360,400	360,400	360,400	330,136	297,172
1954	269,967	248,958	230,167	215,472	221,810	226,543	294,921	360,400	360,400	343,956	308,827	274,943
1955	248,389	246,440	253,658	235,826	222,104	154,790	126,043	224,815	360,400	348,498	313,738	278,863
1956	244,816	218,801	283,964	261,892	207,063	168,360	188,550	360,400	360,400	360,400	347,791	319,290
1957	296,127	283,218	264,874	251,129	261,402	267,702	298,964	360,400	360,400	360,400	326,823	292,697
1958	265,056	247,735	242,715	232,722	252,235	228,728	300,531	360,400	360,400	360,400	353,900	323,910
1959	295,427	273,939	251,438	244,519	213,789	161,220	182,310	235,602	288,072	259,627	223,044	208,219
1960	182,150	179,994	178,838	154,435	117,972	92,922	124,515	215,838	287,602	261,361	226,158	191,940
1961	159,106	134,295	115,531	91,188	79,972	74,855	121,896	214,131	259,832	233,750	203,767	175,689
1962	151,614	131,596	115,495	103,774	126,062	128,199	248,844	360,400	360,400	356,465	326,379	292,131
1963	263,237	241,315	228,196	237,544	296,171	306,227	337,046	360,400	360,400	360,400	336,396	305,026
1964	273,668	279,416	269,775	261,624	255,213	217,991	192,707	277,310	360,400	343,750	309,409	275,896
1965	241,813	249,120	317,459	282,122	231,160	175,820	182,106	294,713	360,400	360,400	360,400	333,188
1966	305,400	307,762	300,466	294,821	270,870	282,135	360,400	360,400	360,400	331,450	297,972	265,321
1967	231,906	220,533	257,784	274,012	288,947	330,000	355,978	360,400	360,400	360,400	360,400	335,768
1968	305,290	284,733	275,763	268,094	285,055	288,111	330,318	360,400	360,400	334,325	299,837	267,451
1969	246,142	255,844	254,565	312,954	330,000	330,000	360,400	360,400	360,400	360,400	349,426	317,777
1970	300,247	306,610	325,386	326,065	322,564	325,562	337,435	360,400	360,400	360,400	326,016	290,760
1971	262,245	257,685	273,909	292,784	307,506	309,059	336,451	360,400	360,400	356,465	325,764	292,446
1972	258,839	241,986	238,534	231,634	227,827	258,038	279,502	360,400	360,400	336,426	299,001	267,965
1973	239,426	223,220	230,637	243,487	254,169	266,817	317,146	360,400	360,400	353,990	322,828	286,127
1974	257,794	293,500	316,503	330,000	330,000	330,000	360,400	360,400	360,400	356,465	331,550	295,187
1975	266,912	262,126	266,128	248,443	254,951	274,815	221,223	360,400	360,400	356,465	324,162	290,479
1976	286,336	282,468	273,429	254,167	243,006	234,707	239,057	325,890	315,337	285,266	253,563	223,665
1977	194,726	169,242	146,459	127,236	111,968	90,372	97,632	115,367	156,470	134,474	104,623	76,248
1978	47,981	26,093	34,215	55,672	78,891	132,593	191,898	356,465	360,400	360,400	357,869	356,406
1979	329,957	311,201	295,960	304,862	315,745	330,000	360,400	360,400	360,400	356,097	320,734	284,314
1980	261,721	269,873	278,531	330,000	326,446	330,000	356,592	360,400	360,400	360,400	352,729	320,413
1981	292,699	270,564	257,688	246,138	249,541	246,043	256,667	348,346	357,910	327,697	290,144	255,269
1982	233,101	260,819	299,676	324,807	326,446	330,000	360,400	360,400	360,400	360,400	360,400	360,400
1983	326,065	330,000	330,000	330,000	330,000	330,000	359,897	360,400	360,400	360,400	360,400	355,970
1984	330,000	326,192	301,515	251,330	205,725	189,676	227,004	360,400	360,400	356,465	328,962	296,457
1985	270,560	289,092	297,165	279,546	266,664	263,877	351,018	360,400	360,400	333,535	296,865	266,723
1986	245,402	227,652	236,474	242,290	318,179	328,413	360,400	360,400	360,400	360,400	337,490	304,597
1987	281,194	259,670	235,533	215,773	204,621	194,313	250,463	346,631	356,070	324,438	287,928	252,729
1988	220,942	205,017	201,762	197,791	193,001	199,093	241,954	333,447	360,400	334,539	299,756	270,997
1989	243,894	222,400	206,450	196,014	195,062	241,083	347,606	360,400	360,400	345,211	312,004	286,902
1990	270,594	275,314	280,094	260,723	246,741	256,550	324,250	360,400	360,400	343,158	313,975	289,321
1991	266,124	247,271	231,814	212,668	197,662	206,866	231,107	352,428	360,400	355,666	321,999	294,243
1992	270,096	257,535	242,695	231,201	237,833	238,182	306,823	360,400	358,060	350,325	321,621	298,034
1993	277,178	261,430	254,452	280,385	295,700	330,000	356,592	360,400	360,400	360,400	339,684	305,994
1994	278,714	256,620	236,501	209,680	199,537	203,831	252,688	360,400	360,400	328,106	288,504	253,299
1995	227,345	247,933	264,532	305,772	330,000	329,098	356,592	360,400	360,400	360,400	360,400	341,235
1996	313,102	291,101	290,319	303,304	330,000	326,065	357,776	360,400	360,400	356,465	329,269	295,808
1997	270,191	287,926	306,502	330,000	300,695	281,114	360,400	360,400	360,400	360,400	334,509	301,549
1998	270,887	249,933	241,331	263,526	290,769	330,000	360,400	360,400	360,400	360,400	357,575	336,363
1999	314,282	302,448	286,043	277,753	239,946	186,761	172,767	359,716	360,400	360,400	328,523	295,405
2000	269,417	268,330	265,806	253,104	253,852	253,003	324,308	360,400	360,400	347,257	314,429	280,432
2001	252,172	231,383	218,839	198,018	190,076	217,611	271,582	360,400	360,186	330,828	293,698	259,268
2002	230,712	217,058	227,783	232,464	236,893	240,595	332,813	360,400	360,400	337,536	300,566	266,784
Avg (21-02)	258,433	250,236	247,365	239,541	231,061	224,148	259,518	335,006	351,584	341,888	314,659	284,123

Table 2.3-2
Hetch Hetchy Reservoir Storage (Acre-feet)

Table 2.3-3
Difference in Hetch Hetchy Reservoir Storage (Acre-feet)

APPENDIX O2

Table 2.3-4
Difference in Hetch Hetchy Reservoir Storage (Acre-feet)

Difference in	ch	Reser	Storage	(Acre-fe						Modified WSIP minus Base		
Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1921	-8,294	-5,533	-5,532	-5,535	-5,538	-4,849	-4,092	-3,420	0	0	-2,188	-4,304
1922	455	1,376	5,181	4,232	4,235	4,235	4,235	0	0	0	-2,188	-4,304
1923	-1,448	1,314	1,314	1,315	1,316	-12,955	-12,955	0	0	0	-2,188	-4,304
1924	455	1,375	1,375	4,230	6,810	1,007	-1,614	-2,994	-5,109	-7,291	-9,466	-11,573
1925	-13,755	5,579	25,557	19,771	2,515	-8,996	-7,900	0	0	0	-2,188	-4,304
1926	-9,344	-14,961	-7,378	-9,285	-9,215	$-25,108$	-21,829	-18,729	0	-2,188	-4,374	-5,291
1927	-2,434	328	1,280	-2,525	-2,526	-5,381	-4,459	0	0	0	-2,188	-4,304
1928	-6,205	-5,285	-2,953	-6,760	-11,060	-13,724	0	0	0	-2,188	-4,373	-6,487
1929	-9,433	-9,434	-11,336	-13,245	-14,971	-20,775	-22,892	-9,409	0	-2,188	-4,374	-6,488
1930	-7,436	11,898	31,876	26,091	16,569	5,057	2,939	0	0	-2,188	-4,373	-6,488
1931	-8,673	-11,435	-4,348	-4,350	-4,352	-10,156	-12,273	-14,454	-16,560	-18,728	-20,891	-22,708
1932	-25,549	-25,549	-20,473	-17,041	-8,349	-5,112	-2,830	-2,046	0	0	-2,188	-4,304
1933	-3,826	-3,827	3,261	-2,445	-7,603	-13,405	-11,571	-9,691	0	0	-2,188	-4,304
1934	-6,490	-12,107	-15,365	-18,739	-24,113	-27,951	-14,010	-16,190	-18,288	-20,447	-22,600	-24,692
1935	-28,483	-9,149	10,830	8,685	7,072	-978	-636	-483	0	0	-2,188	-4,304
1936	-1,448	-1,448	5,685	894	895	786	664	0	0	0	-2,188	-4,304
1937	-4,302	-4,302	-4,302	-8,110	-7,189	-6,035	-5,027	-1,491	0	0	-2,188	-4,304
1938	-4,302	-4,302	-6,331	-10,139	-10,144	-10,145	-8,931	0	0	0	-2,188	-4,304
1939	-2,399	-1,479	1,375	-1,478	-4,057	-9,861	3,808	0	0	-2,188	-4,373	-6,488
1940	-8,672	10,662	29,005	13,704	12,156	10,199	8,612	0	0	-2,188	-4,374	-6,488
1941	-4,582	-3,661	-3,051	-3,053	-2,610	-2,189	-1,670	-1,249	0	0	-2,188	-4,304
1942	-5,349	-5,349	-2,494	0	0	0	0	0	0	0	-2,188	-4,304
1943	-4,302	-1,540	5,547	5,550	5,552	0	0	0	0	0	-2,188	-4,304
1944	-4,302	-3,381	-2,430	-4,334	-11,383	-23,750	-25,868	0	0	0	-2,188	-4,304
1945	455	19,789	39,767	33,983	24,548	24,549	21,607	18,887	0	0	-2,188	-4,304
1946	-4,302	-3,381	-3,382	-3,383	-3,385	-2,974	-2,520	0	0	-2,188	-4,374	-6,487
1947	-1,728	1,034	1,985	4,840	3,125	-7,436	-9,553	0	0	-2,188	-4,374	-6,487
1948	-7,435	-12,039	-4,951	-4,953	-4,956	-10,760	-9,091	-7,614	0	0	-2,188	-4,304
1949	-4,303	-8,905	-7,954	-5,080	-2,505	-2,202	-1,836	-1,533	0	-2,188	-4,374	-6,488
1950	-8,387	10,947	33,308	16,918	15,382	12,899	10,469	8,780	0	-800	-2,988	-5,103
1951	-7,289	0	0	0	0	-3,806	-3,349	-3,347	0	0	-2,188	-4,304
1952	-4,302	-3,381	-2,430	-1,216	-1,217	-1,217	-4,900	0	0	0	-2,188	-4,304
1953	-4,302	-3,381	-3,382	-3,383	-3,385	-15,752	0	0	0	0	-2,188	-4,304
1954	454	1,376	2,327	-526	-4,995	-14,508	-14,048	0	0	-2,188	-4,373	-6,487
1955	-1,728	17,606	32,828	16,389	1,532	-4,271	-3,598	-3,006	0	-2,188	-4,374	-6,488
1956	-8,673	-14,289	-6,886	-6,890	-6,894	-6,002	-5,052	0	0	0	-2,188	-4,304
1957	-6,205	-5,284	-5,284	-7,190	-14,240	-24,801	-26,918	0	0	0	-2,188	-4,304
1958	-2,495	-2,495	4,593	-2,064	-2,065	-2,065	-2,065	0	0	0	-2,188	-4,304
1959	-4,302	-3,382	-3,382	-6,237	-6,241	-21,558	-18,478	-5,383	-7,495	-9,672	-11,844	-13,948
1960	-12,988	6,346	26,325	20,542	10,165	4,457	3,400	-493	-2,610	-4,794	-6,974	-9,084
1961	-11,267	-16,883	-1,354	-6,112	-12,134	-17,938	-20,055	-22,217	-24,309	-26,458	-31,454	-36,022
1962	-38,855	-43,459	-47,263	-47,317	-49,784	-65,006	-70,529	0	0	0	-2,188	-4,304
1963	-9,059	-9,059	-1,971	-1,972	-1,973	-7,681	-7,682	0	0	0	-2,188	-4,304
1964	-6,490	-5,569	-5,570	-13,184	-20,065	-25,869	-25,869	-16,063	3,808	1,616	-574	-2,692
1965	-4,878	14,456	19,521	19,529	19,539	18,739	15,829	13,518	0	0	0	-2,118
1966	-4,019	-1,258	751	-7,050	-13,021	-12,373	3,808	0	0	-2,188	-4,373	-6,488
1967	-8,672	-10,513	-2,902	-2,904	-2,906	0	0	0	0	0	0	-2,118
1968	-3,068	-3,068	4,019	-4,541	-12,276	-18,080	-20,198	0	0	-2,188	-4,374	-6,488
1969	-4,677	-4,676	-1,822	-1,823	0	0	0	0	0	0	-2,188	-4,304
1970	-3,351	15,983	35,961	-3,935	-7,436	-4,438	-6,555	0	0	0	-2,188	-4,304
1971	-2,400	363	363	363	363	-10,197	-12,315	0	0	0	-2,188	-4,304
1972	-6,490	-6,490	-1,734	1,119	-598	-6,402	-8,519	0	0	-2,188	-4,373	-6,487
1973	-7,435	-9,276	-2,189	-2,191	-2,191	-2,191	-4,033	0	0	-2,188	-4,374	-6,487
1974	-8,388	-8,387	-8,388	0	0	0	0	0	0	0	-2,188	-4,304
1975	-2,400	16,935	36,914	25,423	22,001	19,337	19,337	3,935	0	0	-2,188	-4,304
1976	-1,448	-527	6,560	6,565	6,568	765	-1,352	-3,540	-5,654	-7,836	-10,013	-12,119
1977	-17,155	-21,758	-21,757	-18,921	-16,367	-22,170	-24,288	-26,442	-28,490	-25,577	-25,498	-34,635
1978	-44,111	-45,953	-43,099	-45,790	-45,825	-45,825	-50,612	-3,935	0	0	-2,188	-3,994
1979	-43	878	877	-1,976	-1,977	0	0	0	0	-2,188	-4,373	-6,488
1980	-7,531	11,803	27,024	0	0	0	0	0	0	0	-2,188	-4,304
1981	-4,302	-3,382	3,706	-2,000	-7,157	-18,669	-18,668	-12,054	-2,490	-4,676	-6,858	-8,970
1982	-6,110	-1,507	396	396	0	0	0	0	0	0	0	0
1983	0	0	0	0	0	0	0	0	0	0	0	-2,118
1984		0	0	0	0	-9,738	-11,659	0	0	0	-2,188	-4,304
1985	-4,302	15,032	35,010	24,468	14,943	9,141	7,023	0	0	-2,188	-4,374	-6,487
1986	-8,672	-14,288	9	-10,059	-10,064	-1,587	0	0	0	0	-2,188	-4,304
1987	-4,302	-3,382	-3,382	-2,432	-1,574	-7,377	-9,495	-11,677	-4,330	-6,513	-8,693	-10,803
1988	-15,839	-20,442	-13,354	-19,071	-24,236	-30,040	-32,158	-26,953	3,808	1,616	-574	-5,177
1989	-8,028	-8,028	-10,882	-13,743	-16,328	-22,131	-12,794	0	0	-3,805	-6,179	-13,540
1990	-20,193	-860	14,363	3,810	-5,725	-11,529	-13,647	0	0	-1,046	-2,948	-7,549
1991	-11,351	-8,589	-5,735	-5,738	-5,742	-13,353	-13,352	-7,972	0	-951	-5,707	-8,465
1992	-10,364	-14,046	-15,949	-16,909	-19,326	-35,498	-40,102	0	-2,340	-2,337	-2,334	-6,015
1993	-9,818	-7,056	-5,153	-5,156	-5,159	0	0	0	0	0	-2,188	-4,304
1994	-1,448	-527	-527	2,326	-6,265	-12,068	-14,186	0	0	-2,188	-4,374	-6,487
1995	-10,289	9,046	29,024	26,377	20,001	3,033	0	0	0	0	0	-2,118
1996	-4,020	-3,099	-768	-769	0	0	0	0	0	0	-2,188	-4,304
1997	-2,399	-1,478	-1,479	0	0	-10,465	0	0	0	0	-2,188	-4,304
1998	-3,350	-2,430	4,658	4,660	4,663	0	0	0	0	0	-2,188	-7,066
1999	-7,063	-6,143	-5,191	-11,853	-11,858	-11,859	-10,426	-684	0	0	-2,188	-4,304
2000	-4,302	15,032	35,011	19,714	12,851	-468	-2,586	0	0	-2,188	-4,373	-6,488
2001	-6,484	-6,484	603	-6,056	-14,652	-26,069	-28,186	0	-214	-2,402	-4,587	-6,701
2002	-3,843	-2,922	883	-3,873	-8,171	-18,732	-20,850	0	0	-2,188	-4,374	-6,488
Avg (21-02)	-7,145	-3,435	2,378	-1,115	-3,451	-8,198	-7,785	-2,292	-1,345	-2,242	-4,305	-6,672

APPENDIX O2

Through the fall and winter, storage in Hetch Hetchy Reservoir would be the same or higher under the alternative setting as compared to the WSIP setting. Hetch Hetchy Reservoir would fill by the end of May or June during approximately 80 percent of the years, which would prevent any difference in storage from affecting the next summer's reservoir storage. Figure 2.3-2 illustrates the difference in reservoir storage, averaged by year type, between the alternative and the WSIP settings. Also shown is the average difference in storage for the two settings during the 82-year simulation.

Table 2.3-4 illustrates the difference in Hetch Hetchy Reservoir storage between the alternative and base settings. Immediately after filling Hetch Hetchy Reservoir (May or June, and then continuing through July), there would only be occasional differences in storage at the reservoir, typically a decrease of less than 10,000 acre-feet. This is indicative of the same amount of water being passed through the reservoir regardless of the size of the conveyance capacity of the SJPL. Water not diverted to the SJPL would return to the Tuolumne River and flow to Don Pedro Reservoir. In the late summer and early fall, there would consistently be a slight difference (lower) in storage levels between the two settings, as additional diversions to the SJPL would retain Bay Area reservoir storage and serve a slightly greater demand. Some of this additional Hetch Hetchy Reservoir storage depletion would be ameliorated later in the fall and into winter as SJPL diversions are reduced due to less Bay Area reservoir replenishment needs and conveyance system maintenance. Average storage is incidentally about the same in November and December for the alternative and base settings due to the assumed systemwide maintenance that would occur in the alternative setting but not in the base setting. After December, the storage gain occurring in the alternative setting would again be affected as replenishment of Bay Area reservoir storage resumes. In non-wet years, there is a difference in storage between the alternative and base settings; the alternative setting results in a lower storage in the reservoir by the end of April. Figure 2.3-3 illustrates the difference in reservoir storage, averaged by year type, between the alternative and base settings. Also shown is the average difference in storage for the two settings during the 82-year simulation. Figure 2.3-4 illustrates the average monthly storage in Hetch Hetchy Reservoir for the 82-year simulation, and the range in storage for each month for the alternative and base settings.

The difference in storage in Hetch Hetchy Reservoir attributed to the diversion effects of the alternative would manifest in differences in releases from O'Shaughnessy Dam to the stream. A different amount of available reservoir space in the winter and spring due to the alternative would lead to a different ability to regulate inflow, thus potentially changing the amount of water released to the stream that is in excess of minimum release requirements. Figure 2.3-1 illustrates the stream release from O'Shaughnessy Dam for the WSIP, alternative, and base settings. Table 2.3-5 illustrates the difference in stream releases between the alternative and WSIP settings. Compared to the WSIP setting, the alternative exhibits an incrementally greater stream release, predominately during May or June, which is reflective of the months when releases to the stream are made in excess of minimum release requirements in anticipation of filling the reservoir. The few exceptions to this circumstance, during which incremental reductions in releases to the stream occur, are considered anomalous within the modeling and are simply the result of shifting releases from one month to the next. The increase in releases is the result of a less-depleted reservoir to replenish, which is the result of lesser SFPUC demands (and Tuolumne River diversions) between the settings.

Table 2.3-6 illustrates the difference in stream releases between the alternative and base settings. In this comparison, releases would be predominately less than depicted for the base setting, and these differences would typically occur during May or June. Generally, Hetch Hetchy Reservoir storage would be slightly lower during non-wet years, leading to a reduction in stream releases during non-wet years if a release occurs. The few instances of stream flow increases are a result of a coincidence of several operational parameters affecting the release of water from the reservoir, including systemwide water demands, conveyance capacity and maintenance assumptions, and the watershed's hydrology.

Table 2.3-5 illustrates the difference in stream releases between the alternative and WSIP settings, expressed in terms of a monthly volume (acre-feet) of flow. Table 2.3-7 illustrates the same information and the average monthly stream releases for the alternative and WSIP settings, expressed in average monthly flow (cfs). Table 2.3-5 shows an increase in monthly flow below O'Shaughnessy Dam of up to approximately 20,000 acre-feet. Considering the manner in which releases are determined and made to the stream, it is not always meaningful to quantify the effect of these changes in terms of

APPENDIX O2

Figure 2.3-2

Figure 2.3-3

Figure 2.3-4

APPENDIX O2

Table 2.3-5
Difference in Hetch Hetchy Reservoir Release to Stream (Acre-feet) Modified WSIP minus WSIP

Table 2.3-6
Difference in Hetch Hetchy Reservoir Release to Stream (Acre-feet) Modified WSIP minus Base

Table 2.3-7

Hetch Hetchy Reservoir Release to Stream (CFS)												
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Wet	55	51	51	171	89	84	146	2,455	4,544	2,034	184	89
Above Normal	55	89	88	66	89	94	131	1,236	3,107	379	125	89
Normal	54	54	50	55	74	74	98	1,315	1,912	167	122	86
Below Normal	55	55	46	43	51	63	88	624	735	113	111	73
Dry	53	53	44	40	44	50	56	157	143	86	86	65
All Years	54	61	56	74	70	73	104	1,152	2,084	548	125	81
Hetch Hetchy Reservoir Release to Stream (CFS)												
(Average within	- Gr	by Uni	d Runo	Grang								WSIP
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Wet	55	51	51	167	89	84	144	2,412	4,550	2,034	184	89
Above Normal	55	89	88	66	89	94	131	1,192	3,093	379	125	89
Normal	54	54	50	55	74	74	98	1,253	1,890	167	122	86
Below Normal	55	55	46	43	51	63	91	550	709	113	111	73
Dry	53	53	44	40	44	50	56	156	139	86	86	65
All Years	54	61	56	73	70	73	104	1,107	2,072	548	125	81
Difference in Hetch Hetchy Reservoir Release to Stream (CFS)												
(Average within Year Type - Grouped by Unimpaired Runoff at LaGrange)										Modified WSIP minus WSIP		
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Wet	0	0	1	5	0	0	2	43	-6	0	0	0
Above Normal	0	0	0	0	0	0	0	44	14	0	0	0
Normal	0	0	0	0	0	0	0	62	22	0	0	0
Below Normal	0	0	0	0	0	0	-4	74	27	0	0	0
Dry	0	0	0	0	0	0	0	1	4	0	0	0
All Years	0	0	0	1	0	0	0	45	12	0	0	0

average monthly flow (cfs). ${ }^{1}$ When comparing the alternative to the WSIP setting, a change in the volume of release from O'Shaughnessy Dam to the stream would likely result in the release being delayed or initiated earlier by a matter of days. Typical springtime releases, when initiated, amount to a release of up to $3,000 \mathrm{cfs}$ (approximately 6,000 acre-feet over the span of a day). Using the assumption that a change in release volume equates to a delay or an earlier initiation of releasing 6,000 acre-feet per day means that the difference in stream release between the alternative and WSIP would be up to an added three days of release. Normally, this change in release would not affect the peak stream release rate during a year. Table 2.3-8 illustrates the average monthly stream release for the alternative and base settings, and the differences, expressed in average monthly flow (cfs). Table 2.3-6 illustrates that the difference in monthly flow below O'Shaughnessy Dam between the alternative and base settings could range from an increase of approximately 18,000 acre-feet to a decrease of approximately 39,000 acre-feet. Using the same metric as described above to estimate the delay or addition in the number days of release to the stream, the alternative could lead to an effect ranging from an increase of three days of release to a decrease of up to seven days compared to the base setting.

Table 2.3-8

Hetch Hetchy Reservoir Release to Stream (CFS)												
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Wet	55	51	51	171	89	84	146	2,455	4,544	2,034	184	89
Above Normal	55	89	88	66	89	94	131	1,236	3,107	379	125	89
Normal	54	54	50	55	74	74	98	1,315	1,912	167	122	86
Below Normal	55	55	46	43	51	63	88	624	735	113	111	73
Dry	53	53	44	40	44	50	56	157	143	86	86	65
All Years	54	61	56	74	70	73	104	1,152	2,084	548	125	81
Hetch Hetchy Reservoir Release to Stream (CFS)												
(Average within	- G	by Un	Run	Grang								Base
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Wet	55	51	51	173	89	93	148	2,510	4,534	2,034	184	90
Above Normal	55	96	88	66	93	86	131	1,249	3,092	379	125	89
Normal	54	54	50	51	74	74	98	1,443	1,909	167	122	86
Below Normal	55	55	46	43	51	63	91	723	763	113	111	73
Dry	53	53	44	40	44	50	60	199	168	86	86	65
All Years	54	62	56	74	70	73	106	1,219	2,089	548	125	81
Difference in Hetch Hetchy Reservoir Release to Stream (CFS)												
(Average within Year Type - Grouped by Unimpaired Runoff at LaGrange) Modified WSIP minus Base												
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Wet	0	0	1	-2	0	-9	-2	-55	10	0	0	0
Above Normal	0	-7	0	0	-4	8	0	-14	15	0	0	0
Normal	0	0	0	4	0	0	0	-129	4	0	0	0
Below Normal	0	0	0	0	0	0	-4	-99	-28	0	0	0
Dry	0	0	0	0	0	0	-4	-42	-25	0	0	0
All Years	0	-1	0	0	-1	0	-2	-68	-5	0	0	0

[^2]
APPENDIX O2

2.4 Lake Lloyd and Lake Eleanor

Compared to the operation of the WSIP, the operation of Lake Lloyd and Lake Eleanor are simulated to be only slightly different for the alternative. Figure 2.4-1 illustrates a chronological trace of the simulation of Lake Lloyd storage and stream releases. Shown in Figure 2.4-1 are the results for the WSIP, alternative, and base settings. The operation resulting from the alternative is essentially the same as the WSIP setting, including during drought. The level of delivery between the alternative and base settings is larger during the 1987-1992 drought, and water delivery reliability has been improved in the alternative setting; as a result, the drawdown of Lake Lloyd during this period looks similar to that in the WSIP setting. Although there is less water delivered during this period in the alternative setting compared to the WSIP setting, more water is delivered in the alternative setting than in the base setting. The additional draw of water reduced the amount of water released from Hetch Hetchy Reservoir to Don Pedro Reservoir in the alternative setting, which, in order to satisfy TID/MID entitlements to inflow, was met with additional releases from Lake Lloyd, similar to the WSIP setting. The additional release from Lake Lloyd associated with the alternative appears to be approximately the same as in the WSIP setting in this instance, which is partially a factor of modeling discretion in that the HH/LSM makes release decisions in the form of block amounts of releases. Additional refinement of modeling assumptions would likely produce a result that places Lake Lloyd storage during this drought period between the base setting and WSIP setting results. Otherwise, the results for Lake Lloyd storage are essentially the same between the WSIP and alternative settings.

Figure 2.4-2 illustrates the almost identical operation of Lake Eleanor for the alternative and WSIP settings. Also shown in Figure 2.4-2 is the operation for the base setting. Any difference in the Lake Eleanor operation would be caused by a small change in operation at Lake Lloyd that would affect the operation of the Cherry-Eleanor Tunnel between the two watersheds. Any difference that occurs in the simulations is more likely the result of modeling discretion as opposed to any substantive difference in operation.

Supplementing the Figure 2.4-1 representation of Lake Lloyd stream releases is Table 2.4-1, which illustrates releases for the alternative and WSIP settings, and the difference in releases between the two settings. Table 2.4-2 provides the same form of information for the alternative and base settings. With essentially no change in reservoir operations, stream releases will not be different.

2.5 Don Pedro Reservoir and La Grange Releases

A change in Don Pedro Reservoir operation is caused by changes in inflow to the reservoir and the releases from the reservoir. The changes in inflow to the reservoir are the result of net changes within the operation of the upstream SFPUC facilities described previously, and other changes in SFPUC operations associated with diversions to the Holm, Kirkwood, and Moccasin Powerhouses. Figure 2.5-1 illustrates a chronological trace of the simulation of Don Pedro Reservoir storage and Tuolumne River stream releases from La Grange Dam. Shown in Figure 2.5-1 are the results for the WSIP, alternative, and base settings. Supplementing the Figure 2.5-1 representation of Don Pedro Reservoir storage are Table 2.5-1, Don Pedro Reservoir Storage (Modified WSIP); Table 2.5-2, Don Pedro Reservoir Storage (WSIP); and Table 2.5-3, Difference in Don Pedro Reservoir Storage (Modified WSIP minus WSIP). Table 2.5-4 is provided to illustrate the difference in Don Pedro Reservoir storage between the base and alternative settings.

Table 2.5-3 shows that, throughout many years, the storage in Don Pedro Reservoir associated with the alternative setting would differ from the storage in the WSIP setting, and this difference would almost always be more storage. Table 2.5-4 illustrates that Don Pedro Reservoir storage for the alternative is close to the storage depicted for the base setting; storage is either higher or lower, but is typically higher than in the base setting. Compared to the WSIP setting, the differences in storage are indicative of the increase in inflow to Don Pedro Reservoir that is due to lesser SFPUC demands and SJPL diversions in the alternative setting. The increases in storage are also due to a decrease in TID/MID canal diversions from the assumption that conserved water would be developed for the SFPUC transfer. Compared to the base setting, the alternative would result in typically less inflow to Don Pedro Reservoir during non-wet years and particularly during drought periods when more water is diverted

Figure 2.4-1
Lake Lloyd Storage and Stream Release

Figure 2.4-2
Lake Eleanor Storage and Stream Release

APPENDIX O2

Table 2.4-1

Lake Lloyd Re	Lake Lloyd Release to Stream (CFS)											WSIP
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Wet	5	11	134	107	25	21	5	284	1,058	363	15	15
Above Normal	5	72	25	5	16	5	5	166	446	16	15	15
Normal	5	5	5	16	5	5	5	110	162	15	15	15
Below Normal	5	5	5	5	5	5	8	39	43	15	15	15
Dry	5	5	5	5	5	5	5	5	5	16	15	15
All Years	5	20	34	27	11	8	6	120	340	83	15	15
Lake Lloyd Release to Stream (CFS)												
(Average within Year Type - Grouped by Unimpaired Runoff at LaGrange) WSIP												
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Wet	5	11	134	107	25	21	5	284	1,058	363	15	15
Above Normal	5	72	25	5	16	5	5	167	451	16	15	15
Normal	5	5	5	16	5	5	5	110	162	15	15	15
Below Normal	5	5	5	5	5	5	8	39	43	16	15	15
Dry	5	5	5	5	5	5	5	5	5	16	15	15
All Years	5	20	34	27	11	8	6	121	341	83	15	15
Difference in Lake Lloyd Release to Stream (CFS)												
(Average within Year Type - Grouped by Unimpaired Runoff at LaGrange) Modified WSIP minus WSIP												
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Wet	0	0	1	0	0	0	0	0	0	0	0	0
Above Normal	0	0	0	0	0	0	0	-1	-5	0	0	0
Normal	0	0	0	0	0	0	0	0	0	0	0	0
Below Normal	0	0	0	0	0	0	0	0	0	0	0	0
Dry	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	0	0	0	0	0	0	-1	0	0	0

Table 2.4-2

Lake Lloyd Release to Stream (CFS)												
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Wet	5	11	134	107	25	21	5	284	1,058	363	15	15
Above Normal	5	72	25	5	16	5	5	166	446	16	15	15
Normal	5	5	5	16	5	5	5	110	162	15	15	15
Below Normal	5	5	5	5	5	5	8	39	43	15	15	15
Dry	5	5	5	5	5	5	5	5	5	16	15	15
All Years	5	20	34	27	11	8	6	120	340	83	15	15
Lake Lloyd Release to Stream (CFS)												
(Average within	- Gr	by Un	Runo	Grang								Base
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Wet	5	11	134	107	14	21	5	284	1,076	363	15	15
Above Normal	5	72	25	5	16	5	5	164	462	16	15	15
Normal	5	5	5	16	5	5	5	110	162	15	15	15
Below Normal	5	5	5	5	5	5	8	39	43	15	15	15
Dry	5	5	5	5	5	5	5	5	5	16	15	15
All Years	5	20	34	27	9	8	6	120	347	83	15	15
Difference in Lake Lloyd Release to Stream (CFS)												
(Average within Year Type - Grouped by Unimpaired Runoff at LaGrange)										Modified WSIP minus Base		
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Wet	0	0	1	0	11	0	0	0	-18	0	0	0
Above Normal	0	0	0	0	0	0	0	2	-16	0	0	0
Normal	0	0	0	0	0	0	0	0	0	0	0	0
Below Normal	0	0	0	0	0	0	0	0	0	0	0	0
Dry	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	0	0	2	0	0	0	-7	0	0	0

Figure 2.5-1
Don Pedro Reservoir Storage and Release below La Grange Dam

Table 2.5-1
Don Pedro Reservoir Storage (Acre-feet)

Table 2.5-2
Don Pedro Reservoir Storage (Acre-feet)

Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1921	1,262,860	1,277,365	1,340,344	1,508,876	1,689,999	1,690,000	1,713,000	1,758,255	1,920,087	1,785,379	1,633,202	1,551,799
1922	1,466,449	1,451,643	1,475,936	1,496,100	1,682,686	1,690,000	1,713,000	1,965,236	2,030,000	1,950,094	1,790,026	1,700,016
1923	1,638,028	1,643,364	1,689,999	1,689,989	1,689,997	1,690,000	1,713,000	1,799,363	1,900,966	1,828,869	1,683,448	1,632,370
1924	1,563,169	1,547,842	1,533,824	1,515,415	1,506,005	1,417,560	1,338,399	1,262,605	1,162,134	1,052,503	951,855	904,167
1925	906,788	921,085	985,076	1,028,777	1,205,262	1,311,674	1,436,468	1,560,568	1,684,578	1,582,202	1,438,920	1,367,376
1926	1,304,106	1,296,082	1,296,519	1,290,435	1,361,093	1,400,064	1,518,241	1,532,438	1,430,226	1,287,212	1,162,635	1,099,288
1927	1,044,610	1,084,270	1,129,224	1,168,777	1,346,690	1,463,332	1,567,658	1,688,723	1,936,134	1,852,362	1,703,718	1,627,130
1928	1,606,224	1,637,560	1,672,026	1,675,150	1,689,999	1,690,000	1,701,151	1,877,285	1,835,437	1,667,682	1,522,481	1,445,074
1929	1,362,145	1,353,824	1,350,930	1,337,716	1,346,569	1,351,080	1,341,527	1,323,621	1,392,489	1,266,466	1,150,912	1,087,613
1930	1,032,080	1,016,460	1,051,972	1,071,954	1,112,838	1,138,506	1,107,377	1,098,218	1,186,818	1,067,154	960,515	908,251
1931	864,235	866,605	904,039	902,201	933,725	896,662	839,706	804,980	747,051	671,410	610,497	591,503
1932	565,821	560,723	704,485	844,787	1,084,372	1,221,695	1,205,745	1,259,030	1,378,752	1,327,642	1,189,590	1,113,456
1933	1,025,224	1,000,826	998,521	983,959	1,008,603	995,965	955,100	959,906	1,007,489	894,719	782,336	724,120
1934	667,461	656,295	676,788	711,356	777,968	868,739	854,724	813,053	786,448	712,923	652,109	634,358
1935	624,570	638,297	677,837	832,051	956,075	1,079,921	1,337,695	1,442,297	1,633,298	1,541,356	1,416,179	1,343,212
1936	1,311,194	1,303,236	1,297,699	1,351,659	1,689,999	1,690,000	1,713,000	1,808,939	2,003,094	1,900,592	1,747,881	1,665,690
1937	1,613,022	1,592,326	1,585,791	1,579,717	1,689,994	1,690,000	1,713,000	1,792,830	1,982,099	1,843,316	1,694,437	1,610,230
1938	1,536,751	1,528,196	1,689,998	1,689,992	1,689,987	1,690,000	1,690,000	1,730,000	2,025,000	1,959,369	1,790,073	1,700,032
1939	1,672,242	1,671,809	1,685,673	1,689,024	1,689,999	1,690,000	1,634,629	1,601,698	1,473,709	1,301,817	1,157,373	1,119,194
1940	1,077,628	1,070,702	1,134,704	1,288,559	1,565,488	1,690,000	1,713,000	1,808,008	1,950,520	1,780,688	1,627,700	1,539,737
1941	1,469,773	1,454,423	1,553,735	1,689,994	1,689,991	1,690,000	1,690,000	1,804,234	2,030,000	1,950,157	1,790,024	1,700,010
1942	1,641,462	1,634,171	1,689,999	1,689,982	1,689,995	1,690,000	1,713,000	1,765,000	2,027,000	1,950,170	1,790,025	1,700,004
1943	1,619,298	1,656,980	1,690,000	1,689,976	1,689,995	1,690,000	1,713,000	1,940,240	2,030,000	1,940,444	1,790,004	1,700,004
1944	1,627,652	1,614,506	1,602,762	1,595,713	1,659,696	1,690,000	1,654,802	1,700,608	1,738,836	1,608,117	1,463,726	1,386,992
1945	1,362,396	1,410,433	1,456,868	1,483,156	1,689,997	1,690,000	1,713,000	1,750,377	1,973,670	1,906,466	1,749,519	1,662,142
1946	1,664,336	1,690,000	1,689,996	1,689,984	1,689,995	1,690,000	1,713,000	1,726,331	1,786,301	1,618,009	1,459,654	1,373,770
1947	1,314,592	1,331,036	1,364,362	1,376,577	1,405,177	1,370,566	1,295,486	1,351,369	1,288,812	1,144,830	1,017,268	954,574
1948	958,700	959,989	998,610	997,725	983,836	1,013,678	1,114,286	1,251,048	1,420,232	1,377,867	1,303,272	1,271,554
1949	1,247,966	1,239,259	1,234,425	1,223,326	1,235,015	1,400,436	1,383,115	1,432,798	1,409,371	1,242,728	1,096,786	1,022,286
1950	944,784	935,019	938,337	962,506	1,119,822	1,253,320	1,285,258	1,291,998	1,375,323	1,221,712	1,078,645	1,020,719
1951	1,018,036	1,422,514	1,689,995	1,689,971	1,689,993	1,690,000	1,664,085	1,570,386	1,596,323	1,438,802	1,296,271	1,217,452
1952	1,176,472	1,184,189	1,305,781	1,533,995	1,689,998	1,690,000	1,690,000	1,895,000	2,030,000	1,951,049	1,790,051	1,700,027
1953	1,614,775	1,604,850	1,619,190	1,689,999	1,689,998	1,688,681	1,619,217	1,588,332	1,773,663	1,724,813	1,589,215	1,514,922
1954	1,449,795	1,449,008	1,452,649	1,459,444	1,505,884	1,611,838	1,643,837	1,773,541	1,769,428	1,605,391	1,456,830	1,379,013
1955	1,300,328	1,300,104	1,318,386	1,350,951	1,401,218	1,464,906	1,489,052	1,525,796	1,487,090	1,348,288	1,221,076	1,163,037
1956	1,100,763	1,099,427	1,651,474	1,689,947	1,689,993	1,690,000	1,713,000	1,804,698	2,030,000	1,950,170	1,790,030	1,700,025
1957	1,639,825	1,624,492	1,616,539	1,610,979	1,668,413	1,690,000	1,553,124	1,584,074	1,786,699	1,635,352	1,492,723	1,419,571
1958	1,403,575	1,396,361	1,409,069	1,432,024	1,578,593	1,690,000	1,690,000	1,910,000	2,030,000	1,950,170	1,790,046	1,700,029
1959	1,611,062	1,589,728	1,567,833	1,592,273	1,689,999	1,690,000	1,662,406	1,600,478	1,493,480	1,324,246	1,178,165	1,178,441
1960	1,101,196	1,090,401	1,113,627	1,113,311	1,220,539	1,228,588	1,240,002	1,245,830	1,168,185	1,034,178	923,226	874,650
1961	827,383	826,615	897,810	899,493	908,561	870,204	842,562	814,709	769,512	703,148	648,423	629,635
1962	604,125	599,069	626,802	630,729	817,825	938,956	931,539	835,624	1,048,335	953,860	814,699	742,797
1963	700,558	694,902	745,217	790,246	957,421	1,023,119	1,119,414	1,363,268	1,654,516	1,631,866	1,513,806	1,455,856
1964	1,437,657	1,487,272	1,502,934	1,521,014	1,535,522	1,502,343	1,443,836	1,438,577	1,397,068	1,238,632	1,101,362	1,031,330
1965	1,018,694	1,042,070	1,471,762	1,689,988	1,689,993	1,690,000	1,713,000	1,743,852	1,900,867	1,898,947	1,790,038	1,700,028
1966	1,615,736	1,690,000	1,689,998	1,689,996	1,689,998	1,690,000	1,670,732	1,742,447	1,620,676	1,452,534	1,306,169	1,236,095
1967	1,160,837	1,194,375	1,348,066	1,447,078	1,544,910	1,690,000	1,690,000	1,880,000	2,030,000	2,030,000	1,790,252	1,700,021
1968	1,619,820	1,607,624	1,605,760	1,605,959	1,668,870	1,690,000	1,614,396	1,614,311	1,547,133	1,375,977	1,237,984	1,160,815
1969	1,124,725	1,154,047	1,243,529	1,689,996	1,689,990	1,690,000	1,690,000	1,930,000	2,030,000	1,975,279	1,790,111	1,700,033
1970	1,676,114	1,681,553	1,689,999	1,689,952	1,689,996	1,690,000	1,649,691	1,718,076	1,804,962	1,670,839	1,531,070	1,453,473
1971	1,394,102	1,437,025	1,524,073	1,589,976	1,659,167	1,690,000	1,647,943	1,676,856	1,840,272	1,736,038	1,599,726	1,530,826
1972	1,469,268	1,477,826	1,521,421	1,571,887	1,625,342	1,603,292	1,501,630	1,475,950	1,480,830	1,319,081	1,185,074	1,119,002
1973	1,081,006	1,094,033	1,176,102	1,304,888	1,484,502	1,646,959	1,675,219	1,921,511	2,030,000	1,863,873	1,716,891	1,634,144
1974	1,625,114	1,690,000	1,689,998	1,689,983	1,689,998	1,690,000	1,717,600	1,964,185	2,030,000	1,943,894	1,790,018	1,700,018
1975	1,671,620	1,661,732	1,660,185	1,665,519	1,689,996	1,690,000	1,717,600	1,824,854	2,030,000	1,950,013	1,790,077	1,700,024
1976	1,690,000	1,690,000	1,690,000	1,664,706	1,649,459	1,519,032	1,432,156	1,326,070	1,216,796	1,085,092	998,502	968,734
1977	932,654	925,543	955,652	938,503	920,299	807,858	717,610	671,981	616,184	544,084	486,059	467,586
1978	447,583	445,345	497,628	642,718	811,604	1,050,470	1,227,230	1,356,274	1,761,000	1,841,159	1,704,419	1,692,926
1979	1,606,278	1,609,357	1,608,413	1,689,999	1,689,995	1,690,000	1,690,000	1,717,600	1,827,795	1,673,824	1,527,042	1,450,952
1980	1,419,903	1,422,622	1,442,656	1,689,977	1,689,987	1,690,000	1,717,600	1,890,400	1,960,200	1,950,171	1,790,057	1,700,035
1981	1,617,942	1,596,204	1,588,406	1,595,955	1,619,607	1,690,000	1,710,315	1,694,081	1,626,429	1,461,340	1,330,112	1,262,473
1982	1,253,640	1,360,563	1,511,306	1,689,997	1,689,988	1,690,000	1,717,600	1,876,400	2,002,900	1,954,717	1,790,097	1,700,116
1983	1,690,000	1,690,000	1,689,995	1,689,966	1,689,989	1,294,700	1,264,000	1,270,800	1,851,400	2,030,000	1,869,137	1,700,118
1984	1,666,919	1,690,000	1,689,992	1,689,972	1,689,993	1,690,000	1,614,072	1,682,328	1,778,205	1,646,266	1,496,949	1,414,071
1985	1,399,091	1,434,211	1,478,590	1,469,173	1,504,226	1,570,360	1,558,812	1,616,719	1,550,570	1,386,112	1,251,881	1,188,728
1986	1,162,153	1,183,366	1,254,950	1,319,946	1,689,994	1,690,000	1,717,600	1,888,300	2,001,400	1,917,776	1,770,749	1,700,004
1987	1,641,221	1,619,848	1,601,298	1,570,175	1,566,241	1,592,870	1,533,147	1,433,211	1,330,588	1,195,991	1,085,371	1,032,594
1988	1,010,460	1,009,573	1,045,756	1,099,567	1,155,125	1,128,364	1,103,870	1,063,204	1,011,973	943,381	884,236	862,821
1989	836,632	844,157	876,836	900,479	930,034	1,051,709	1,029,659	1,110,864	1,160,578	1,025,069	913,162	908,781
1990	935,547	934,238	954,290	956,979	989,562	968,936	944,775	965,169	990,902	924,588	852,141	815,058
1991	799,492	794,262	814,409	803,540	782,227	856,893	858,476	917,797	1,020,071	946,830	874,711	843,590
1992	844,030	841,586	863,738	868,291	931,612	990,953	1,044,352	1,043,659	967,160	874,930	761,589	698,367
1993	662,549	656,233	682,056	877,956	1,027,740	1,267,172	1,365,280	1,684,448	1,941,790	1,923,275	1,785,144	1,700,014
1994	1,627,176	1,612,969	1,599,152	1,589,196	1,599,258	1,567,682	1,531,904	1,523,687	1,478,913	1,356,482	1,256,718	1,211,217
1995	1,172,146	1,191,956	1,236,737	1,494,252	1,599,122	1,690,000	1,717,600	1,629,700	1,982,800	2,030,000	1,814,001	1,700,059
1996	1,608,079	1,583,093	1,604,410	1,672,573	1,689,990	1,690,000	1,717,600	2,002,400	2,030,000	1,930,383	1,782,384	1,700,010
1997	1,667,198	1,690,000	1,689,993	1,689,875	1,689,994	1,690,000	1,598,189	1,839,987	1,951,576	1,810,929	1,668,846	1,615,122
1998	1,533,848	1,527,463	1,528,868	1,690,000	1,689,989	1,690,000	1,717,600	1,714,000	1,987,500	2,030,000	1,790,242	1,700,022
1999	1,662,014	1,675,303	1,690,000	1,689,986	1,689,990	1,690,000	1,717,600	1,781,250	1,998,452	1,868,511	1,726,752	1,652,772
2000	1,566,486	1,554,834	1,539,188	1,615,107	1,689,994	1,690,000	1,717,600	1,981,851	2,030,000	1,864,407	1,719,364	1,644,682
2001	1,634,728	1,622,232	1,613,706	1,605,692	1,629,054	1,690,000	1,716,911	1,801,382	1,668,653	1,504,167	1,365,411	1,300,012
2002	1,238,260	1,249,893	1,323,366	1,378,790	1,430,954	1,481,487	1,466,303	1,583,557	1,606,470	1,443,430	1,305,249	1,232,624
Avg (21-02)	1,289,807	1,299,980	1,345,245	1,393,639	1,456,995	1,482,690	1,485,599	1,553,787	1,637,503	1,537,849	1,401,689	1,333,676

Table 2.5-3
Difference in Don Pedro Reservoir Storage (Acre-feet)

Table 2.5-4
Difference in Don Pedro Reservoir Storage (Acre-feet)

iffe	Pedro	servoir	torage	(Acre-feet)							ied WSIP	us B
Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1921	10,552	10,546	10,546	10,549	0	0	0	3,139	-2,395	-4,568	-1,554	4,440
1922	6,030	6,026	6,027	6,029	0	0	0	5,184	0	-5	7	9
1923	1,608	1,607	0	0	0	0	0	-9,124	-11,208	-13,343	-10,291	-4,268
1924	-2,661	-2,660	-2,660	-2,661	-2,661	-2,660	764	5,875	5,784	5,674	8,573	14,491
1925	16,055	16,044	16,043	16,041	16,041	16,026	15,797	11,678	9,526	7,302	10,262	16,218
1926	17,783	17,773	17,278	17,283	17,209	17,778	17,484	18,161	-2,695	-2,684	322	6,311
1927	7,897	7,891	14,492	14,496	14,498	14,492	17,477	15,725	0	-2,184	2	9
1928	1,609	0	0	0	0	0	-899	2,911	787	784	3,774	9,750
1929	11,328	11,322	11,323	11,326	11,327	11,322	14,310	4,627	-6,889	-6,858	-3,833	2,170
1930	3,764	3,761	3,762	3,762	3,763	3,762	6,757	13,480	11,320	11,270	14,211	20,151
1931	21,706	21,692	21,693	21,700	21,702	21,694	24,670	30,593	30,483	30,339	33,182	39,058
1932	40,576	40,553	31,674	24,416	15,716	-1,032	-3,076	-1,657	-7,367	-9,517	-6,480	-468
1933	1,131	1,130	1,131	1,130	1,130	1,131	177	2,115	-9,670	-11,809	-8,760	-2,740
1934	-1,135	-1,135	1,150	-1,171	755	-1,211	-1,530	-6,447	-8,222	-8,183	-5,150	857
1935	2,453	2,452	2,452	-14,519	-30,168	-20,129	-25,734	-25,796	-43,945	-45,937	-42,745	-36,614
1936	-34,940	-34,921	-34,969	-34,941	1	0	0	4,470	2,341	148	3,140	9,121
1937	10,701	10,695	10,696	10,699	0	0	0	-2,568	-8,918	-11,064	-8,021	-2,006
1938	-404	-402	0	0	0	0	0	0	0	-2,183	2	9
1939	1,608	1,607	1,607	976	0	0	-12,780	-5,138	-7,235	-7,202	-4,176	1,827
1940	3,422	3,420	-502	2,277	1,426	0	0	12,724	9,006	8,966	11,921	17,872
1941	19,434	19,422	18,813	-3	0	0	0	5,573	0	-4	7	10
1942	1,608	1,607	1	1	0	0	0	0	0	0	7	9
1943	1,608	1,607	0	0	0	0	0	5,042	0	-2,183	2	10
1944	1,608	1,607	1,607	1,608	1,608	0	2,998	-19,024	-21,076	-23,169	-20,072	-14,015
1945	-12,387	-12,381	-12,381	-12,385	0	0	0	6,512	23,217	20,934	23,835	29,751
1946	31,289	106	0	0	0	0	0	1,291	-827	-823	2,173	8,155
1947	9,737	9,732	9,732	9,734	9,735	9,732	12,721	6,957	4,819	4,798	7,769	13,733
1948	15,301	15,293	15,293	15,297	15,299	15,293	14,531	16,879	7,186	5,052	8,089	14,092
1949	15,678	15,673	15,675	15,657	15,660	16,321	19,398	24,089	21,559	21,461	24,354	30,262
1950	31,798	31,779	20,780	29,360	14,494	11,170	14,470	19,919	26,493	24,987	27,865	33,761
1951	35,290	24,301	-1	0	0	0	1,622	7,921	2,378	184	3,176	9,155
1952	10,735	10,728	10,729	9,517	-1	0	0	0	0	-2,184	2	10
1953	1,608	1,608	1,607	-1	0	0	-14,862	-9,783	-10,670	-12,808	-9,760	-3,737
1954	-2,131	-2,130	-2,130	-2,131	-2,130	-2,130	871	-9,349	-11,433	-11,384	-8,339	-2,321
1955	-718	-718	-718	-718	-718	-717	216	3,316	-2,408	-2,398	607	6,594
1956	8,179	8,175	0	1	1	0	0	-1	0	0	7	9
1957	1,607	1,607	1,607	1,608	1,608	0	2,999	-20,075	-22,124	-24,212	-21,111	-15,050
1958	-13,421	-13,413	-13,413	-13,418	-13,419	0	0	0	0	0	7	9
1959	1,608	1,607	1,607	1,607	0	0	-2,197	-11,452	-11,414	-11,362	-8,316	-2,298
1960	-695	-694	-695	-694	-695	-789	1,150	8,837	8,808	8,767	11,719	17,666
1961	19,225	19,214	10,773	10,777	10,777	10,773	13,760	19,715	19,644	19,551	22,448	28,357
1962	29,897	29,880	29,882	29,890	29,893	29,881	32,850	-35,543	-39,188	-41,193	-38,008	-31,883
1963	-30,216	-30,197	-22,272	-8,960	-30,220	-30,209	-27,182	-28,787	-28,692	-30,750	-27,623	-21,543
1964	-19,901	-19,890	-19,891	-19,896	-8,124	-8,120	-7,231	-13,185	-35,078	-34,920	-31,764	-25,668
1965	-24,017	-24,003	-14,799	2	0	0	0	7,340	19,881	17,611	41	10
1966	1,608	0	0	0	0	0	-15,292	-7,644	-9,734	-9,690	-6,652	-639
1967	960	960	960	960	960	0	0	0	0	0	1	9
1968	1,608	1,608	1,607	1,608	1,608	0	2,998	-13,367	-15,436	-15,366	-12,301	-6,271
1969	-4,659	-4,656	-4,657		0	0	0	0	0	-2,184	2	10
1970	1,608	1,607	0	-4	0	0	2,999	254	-1,861	-4,036	-1,025	4,968
1971	6,557	6,552	6,553	6,554	6,556	0	2,999	-5,496	-7,593	-9,742	-6,707	-694
1972	905	905	905	904	905	905	3,902	-804	-2,916	-2,903	104	6,093
1973	7,679	7,675	7,675	7,677	7,678	0	0	1,016	0	0	2,993	8,974
1974	10,554	0	0		0	0	0	2,191	0	-2,184	2	10
1975	1,608	1,607	1,607	1,607	0	0	0	17,564	0	-4	6	9
1976	0	0	0	0	0	0	2,998	8,983	8,951	8,910	11,863	17,811
1977	19,371	19,360	19,360	19,366	19,367	19,360	22,339	28,269	28,172	28,028	30,876	36,726
1978	38,225	38,196	38,199	38,211	38,215	38,200	41,161	-4,293	0	-2,183	819	4,600
1979	5,095	5,092	5,092	-1	0	0	0	0	-2,114	-2,105	897	6,885
1980	8,468	8,464	8,465	-4	0	0	0	0	0	0	7	9
1981	1,608	1,607	1,607	1,608	1,607	0	882	-1,908	-13,555	-13,495	-10,440	-4,414
1982	-2,806	-2,805	-2,805		0	0	0	0	0	-2,183	-2	0
1983		0	0	0	0	0	0	0	0	0	-2,183	0
1984	-1,466	0	0	-1	0	0	2,802	-5,035	-7,133	-9,286	-6,251	-241
1985	1,358	1,357	1,357	1,358	1,357	1,358	4,355	15,162	12,997	12,939	15,871	21,809
1986	23,362	23,349	9	11,298	-1	0	0	0	0	-2,184	820	11
1987	1,610	1,608	1,609	1,609	1,609	1,608	4,606	10,587	1,110	1,104	4,092	10,068
1988	11,646	11,639	11,639	11,643	11,643	11,639	14,627	13,217	-19,630	-19,539	-16,454	-10,405
1989	-8,784	-8,779	-8,779	-8,782	-8,783	-8,780	-17,222	-26,333	-28,541	-28,412	-25,289	-19,211
1990	-17,572	-17,562	-17,563	-17,569	-17,569	-17,563	-14,547	-14,730	-8,961	-8,920	-5,885	125
1991	-3,473	-3,471	-4,843	-12,641	-14,145	-14,140	-11,143	-8,906	-21,810	-21,733	-18,658	-12,615
1992	-10,993	-10,988	-10,988	-10,992	-10,993	-10,990	4,598	-9,035	-9,042	-9,045	-6,047	-58
1993	1,526	1,524	-6,413	-14,665	-14,667	-19,965	-16,145	-12,014	0	-5	7	10
1994	1,608	1,607	1,607	1,608	1,608	1,607	4,604	-5,760	-7,855	-7,818	-4,789	1,217
1995	2,812	2,812	2,811	2,812	6,795	0	0	0	0	0	-2,184	6
1996	1,605	1,604	1,604	1,605	0	0	0	0	0	-2,183	820	11
1997	1,610			0	0	0	-9,578	-5,747	-7,843	-9,992	-6,955	-942
1998	658	658	658	0	0	0	0	0	0	0	7	10
1999	1,608	1,607	-1	0	0	0	0	-5,917	-8,693	-10,839	-7,799	-1,783
2000	-182	-181	-181	-182	0	0	0	1,226	0	0	2,994	8,974
2001	10,555	10,548	10,550	10,553	10,553	0	689	-23,644	-25,468	-25,355	-22,247	-16,182
2002	-14,549	-14,541	-14,542	-14,545	-14,547	-14,541	-11,529	-28,508	-30,526	-30,391	-27,258	-21,175
Avg (21-02)	4,307	3,621	2,642	2,388	1,759	1,233	1,715	-177	-3,240	-4,096	-1,896	2,500

APPENDIX O2

to the SJPL in the alternative setting. Less inflow leads to less reservoir storage. Figure 2.5-1 illustrates that during drought sequences, a reduction to inflow to Don Pedro Reservoir can accumulate from year to year, particularly in the comparison of the WSIP and base settings. Compared to the base setting, storage in Don Pedro Reservoir in the alternative setting would be nearly the same. Figure 2.5-2 illustrates the difference in reservoir storage averaged by year type for the alternative and WSIP settings. Also shown is the average difference in storage for the two settings during the 82-year simulation. Figure 2.5-3 illustrates the same information for the alternative and base settings.

Figure 2.5-2

Figure 2.5-3

Figure 2.5-4 illustrates the average monthly storage in Don Pedro Reservoir for the 82-year simulation, and the range in storage for each month for the alternative and base settings.

The simulation shows that the occasional large storage depletions in Don Pedro Reservoir associated with the WSIP would be largely ameliorated by the use of conserved water for the transfer. In the alternative setting, the SJPL diverts an average of 17,000 acre-feet more than in the base setting, and the transfer is an annual average of 19,600 acre-feet for design drought yield purposes. It is assumed that the conservation of water for the transfer is also 19,600 acre-feet every year to satisfy the SFPUC's need for yield during the design drought sequence. Because the conserved water transfer (occurring each year) would be greater than the SJPL/inflow effect, Don Pedro Reservoir storage, and the La Grange release to the Tuolumne River as described below, could be slightly larger at times than in the base setting. In a few other instances, Don Pedro Reservoir storage and La Grange releases could be lower. The development

APPENDIX O2

and transfer of conserved water is not a perfect match (total elimination of effect) each year due to several factors, particularly the fact that the year-to-year and average numbers do not always coincide.

Figure 2.5-4

Sometimes a portion of the conserved water would be developed prior to an ensuing reservoir spill and could not be used to reduce an accumulating inflow deficit that occurred subsequent to the spill. Also, the additional SJPL diversion and its effect on Don Pedro Reservoir inflow would not occur at a constant year-to-year rate; sometimes more than the average effect, and sometimes less than the average effect, would occur. This circumstance could lead to a larger storage deficit in a year than the amount of water conserved in a year, and vise versa. Depending on the coincidence of the hydrologic sequence of Don Pedro Reservoir replenishment and the running accumulation of the inflow effect, the storage deficit might not be totally ameliorated during all hydrologic sequences.

The difference in storage in Don Pedro Reservoir attributed to the upstream effects of the alternative and the countering reduction in the TID/MID canal diversions would manifest in differences in releases from La Grange Dam to the stream. A different amount of available reservoir space in the winter and spring due to the alternative would lead to a different ability to regulate inflow, thus potentially changing the amount of water released to the stream that is in excess of minimum release requirements. During periods when inflow or canal diversions differ and Don Pedro Reservoir is at maximum capacity within the flood control storage limitation, a change in inflow or canal diversions directly manifests as a change in releases from La Grange Dam (a change of either more or less flow). Figure 2.5-1 illustrates the stream releases from La Grange Dam for the WSIP, alternative, and base settings.

Table 2.5-5 illustrates the difference in stream releases between the alternative and WSIP settings. Compared to the WSIP setting, the alternative exhibits an incrementally larger stream release, predominately during some months of the early winter through June period, which is reflective of the months when releases to the stream are made in excess of minimum release requirements due to flood control or in anticipation of filling the reservoir. Table 2.5-6 shows the same information for the alternative and WSIP settings, arranged by ranking the years in descending order of the San Joaquin River Index (an index indicating the wetness of the Tuolumne River Basin and the San Joaquin River Basin). The table illustrates the finding that differences in releases to the Tuolumne River from La Grange Dam occur only when there are releases in excess of minimum FERC flow requirements. This circumstance typically occurs only in above-normal and wet years, and predominately during early winter through June. During late summer of above-normal and wet years (August and September) there may also be releases in excess of minimum FERC flow requirements. These releases are associated with the drawdown of Don Pedro Reservoir during antecedent wetter years in anticipation of fall-time flood control objectives. During other year types and typically during the summer and fall, releases would be maintained at minimum FERC flow requirements regardless of the setting. Compared to the WSIP setting, the large potential reduction in flow following an extended drought period is reduced with the alternative, since the amount of water delivered by the SFPUC during these periods is somewhat less than that delivered in the WSIP setting, and the water for additional deliveries is derived from conserved water in Don Pedro Reservoir.

APPENDIX O2

As described above concerning Don Pedro Reservoir inflow, releases, and storage, compared to the base setting the alternative setting would lead to a mixed effect on La Grange releases. Table 2.5-7 illustrates the difference in stream releases between the alternative and base settings. Table 2.5-8 shows the same information ranked in descending order of the San Joaquin River Index. Overall, releases below La Grange Dam are very similar between the alternative and base settings. This circumstance is the intended result of the mitigation measure under this alternative to use conserved water to offset the Don Pedro Reservoir inflow effect of the SFPUC's additional diversion of water from the Tuolumne River. As seen in some months, such as August and September, there are occasional increases in La Grange releases. These are instances when developing conserved water every year sometimes only adds to the water that would be released in excess of FERC requirements during a drawdown of storage prior to the fall flood control level at Don Pedro. Also, some positive values occur when early-season conserved water only adds to Don Pedro spills prior to filling.

In year-to-year operations, the conserved water could be adjusted if it would merely turn into an unneeded spill. However, outside of flood events, additional flow during the summer as a result of the conserved could be welcomed. For purposes of this analysis, the conserved water is assumed to be developed each year. However, it should be noted that the additional flow that occurs due to the conserved water was not explicitly patterned for any purpose except to draw Don Pedro Reservoir down to flood control objectives.

Table 2.5-5 and Table 2.5-7 illustrate the difference in stream releases among the alternative, WSIP, and base settings, expressed in terms of a monthly volume (acre-feet) of flow. Table 2.5-9 presents the same information and the average monthly stream releases for the alternative and WSIP settings, expressed in total monthly flow (acre-feet), and Table 2.5-10 shows the same information for the alternative and base settings. For the comparison of the alternative to the WSIP setting, the difference in monthly flow below La Grange Dam could range from an increase of approximately 212,000 acre-feet to a decrease of approximately 6,000 acre-feet. Considering the manner in which releases are determined and made to the stream, it is not always meaningful to quantify the effect of these changes in terms of average monthly flow (cfs). Similar to the operation of releases below O'Shaughnessy Dam, a change in the volume of release from La Grange Dam to the stream would likely delay or accelerate the initiation of the release by a matter of days. Using the assumption that a change in release volume equates to a delay or acceleration of releasing 6,000 acre-feet per day means that the difference in stream release from La Grange Dam between the alternative and WSIP would be an additional day of delay in releases or up to almost an added month of releases. Normally, a change in release would not affect the peak stream release rate during a year. Compared to the base setting, the alternative's effect on stream flow ranges from a reduction in releases (a potential delay in release of five days) to an increase in releases (a potential additional five days of release). In either direction, the maximum difference in La Grange releases between the alternative and base settings was reduced to about 30,000 acre-feet as the result of the conserved water measure.

Table 2.5-5
Difference in Total La Grange Release to River (Acre-feet)

Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
1921	0	0	0	0	10,550	1,295	3,379	0	0	0	0	0	15,224
1922	0	0	0	0	11,163	7,312	8,524	0	16,332	0	2,994	5,997	52,322
1923	0	0	1,607	0	0	0	6,038	0	0	0	0	0	7,645
1924	0	0	0	0	0	0	0	0	0	0	0	0	0
1925	0	0	0	0	0	0	0	0	0	0	0	0	0
1926	0	0	0	0	0	0	0	0	0	0	0	0	0
1927	0	0	0	0	0	0	0	0	34,956	0	9,765	19,149	63,870
1928	0	21,878	34,469	3,128	14,851	-1	0	0	0	0	0	0	74,325
1929	0	0	0	0	0	0	0	0	0	0	0	0	0
1930	0	0	0	0	0	0	0	0	0	0	0	0	0
1931	0	0	0	0	0	0	0	0	0	0	0	0	0
1932	0	0	0	0	0	0	0	0	0	0	0	0	0
1933	0	0	0	0	0	0	0	0	0	0	0	0	0
1934	0	0	0	0	0	0	0	0	0	0	0	0	0
1935	0	0	0	0	0	0	0	0	0	0	0	0	0
1936	0	0	0	0	212,095	4,633	6,756	0	0	0	0	0	223,484
1937	0	0	0	0	25,974	2,039	8,664	0	0	0	0	0	36,677
1938	0	0	21,216	0	0	39	8,009	10,282	1,197	0	2,993	5,997	49,733
1939	0	0	0	631	977	0	0	0	0	0	0	0	1,608
1940	0	0	0	0	0	34,432	7,881	0	0	0	0	0	42,313
1941	0	0	0	15,508	-2	0	3,000	0	7,853	0	2,994	5,997	35,350
1942	0	0	1,607	3,047	-1	0	8,524	6,000	0	0	2,994	5,997	28,168
1943	0	0	1,606	0	0	4,889	6,867	0	8,413	0	2,994	5,997	30,766
1944	0	0	0	0	0	1,608	0	0	0	0	0	0	1,608
1945	0	0	0	0	25,070	-1	4,026	0	0	0	0	0	29,095
1946	0	23,867	0	0	0	1,237	4,040	0	0	0	0	0	29,144
1947	0	0	0	0	0	0	0	0	0	0	0	0	0
1948	0	0	0	0	0	0	0	0	0	0	0	0	0
1949	0	0	0	0	0	0	0	0	0	0	0	0	0
1950	0	0	0	0	0	0	0	0	0	0	0	0	0
1951	0	0	140,857	-3	0	0	0	0	0	0	0	0	140,854
1952	0	0	0	0	30,875	-1	3,000	16,030	1,197	0	2,994	5,997	60,092
1953	0	0	0	1,607	0	0	0	0	0	0	0	0	1,607
1954	0	0	0	0	0	0	0	0	0	0	0	0	0
1955	0	0	0	0	0	0	0	0	0	0	0	0	0
1956	0	0	37,840	38,536	-5	0	5,578	0	8,413	0	2,994	5,997	99,353
1957	0	0	0	0	0	1,607	0	0	0	0	0	0	1,607
1958	0	0	0	0	0	25,042	3,001	15,426	1,013	0	2,993	5,997	53,472
1959	0	0	0	0	1,607	0	0	0	0	0	0	0	1,607
1960	0	0	0	0	0	0	0	0	0	0	0	0	0
1961	0	0	0	0	0	0	0	0	0	0	0	0	0
1962	0	0	0	0	0	0	0	0	0	0	0	0	0
1963	0	0	0	0	0	0	0	0	0	0	0	0	0
1964	0	0	0	0	0	0	0	0	0	0	0	0	0
1965	0	0	0	170,933	5,134	0	11,075	0	0	0	7,341	6,007	200,490
1966	0	1,607	523	0	16,091	-6,452	0	0	0	0	0	0	11,769
1967	0	0	0	0	0	16,553	3,000	19,378	921	0	2,994	5,997	48,843
1968	0	0	0	0	0	1,608	0	0	0	0	0	0	1,608
1969	0	0	0	20,586	624	10,837	7,879	6,000	0	0	2,993	5,997	54,916
1970	0	0	1,608	2,855	-1	0	0	0	0	0	0	0	4,462
1971	0	0	0	0	0	22,086	0	0	0	0	0	0	22,086
1972	0	0	0	0	0	0	0	0	0	0	0	0	0
1973	0	0	0	0	0	14,881	3,620	0	60,484	0	0	0	78,985
1974	0	10,551	0	0	0	6,659	7,603	0	8,413	0	2,993	5,997	42,216
1975	0	0	0	0	1,608	0	8,524	0	11,264	0	2,993	5,996	30,385
1976	1,610	0	0	0	0	0	0	0	0	0	0	0	1,610
1977	0	0	0	0	0	0	0	0	0	0	0	0	0
1978	0	0	0	0	0	0	0	0	76,662	0	0	1,901	78,563
1979	0	0	0	8,659	-1	4,729	3,000	6,000	0	0	0	0	22,387
1980	0	0	0	17,403	-3	4,947	5,577	6,000	0	0	2,994	5,997	42,915
1981	0	0	0	0	0	1,607	0	0	0	0	0	0	1,607
1982	0	0	0	24,409	11,947	0	3,000	7,903	1,841	0	2,994	6,006	58,100
1983	1,600	0	952	1		0	3,001	12,688	1,841	0	3,000	6,000	29,083
1984	0	2,518	1	0	0	0	0	0	0	0	0	0	2,519
1985	0	0	0	0			0		0	0	0	0	0
1986	0	0	9	0	40,478	11,649	13,634	7,236	1,197	0	0	8,974	83,177
1987	0	0	0	0	0	0	0	0	0	0	0	0	0
1988	0	0	0	0	0	0	0	0	0	0	0	0	0
1989	0	0	0	0	0	0	0	0	0	0	0	0	0
1990	0	0	0	0	0	0	0	0	0	0	0	0	0
1991	0	0	0	0	0	0	0	0	0	0	0	0	0
1992	0	0	0	0	0	0	0	0	0	0	0	0	0
1993	0	0	0	0	0	0	0	0	95,016	61,107	24,874	10,886	191,883
1994	0	0	0	0	0	0	0	0	0	0	0	0	0
1995	0	0	0	0	0	33,024	13,398	6,857	829	0	3,000	5,991	63,099
1996	0	0	0	0	2,529	0	5,118	6,000	0	0	0	8,974	22,621
1997	0	1,612	0	4,729	-1	0	0	0	0	0	0	0	6,340
1998	0	0	0	19,380	-3	7,782	9,445	7,046	1,012	0	2,993	5,997	53,652
1999	0	0	1,607	0	0	1,902	10,708	0	0	0	0	0	14,217
2000	0	0	0	0	18,913	0	3,000	0	11,583	0	0	0	33,496
2001	0	0	0	0	0	10,551	2,311	0	0	0	0	0	12,862
2002	0	0	0	0	0	0	0	0	0	0	0	0	0
(21-02)	39	757	2,974	4,042	5,250	2,762	2,453	1,620	4,274	745	1,133	1,925	27,973

Table 2.5-6
Difference in Total La Grange Release to River (Acre-feet)

Matrix Data for													
Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
1983	1,600	0	952	1	0	0	3,001	12,688	1,841	0	3,000	6,000	29,083
1995	0	0	0	0	0	33,024	13,398	6,857	829	0	3,000	5,991	63,099
1969	0	0	0	20,586	624	10,837	7,879	6,000	0	0	2,993	5,997	54,916
1982	0	0	0	24,409	11,947	0	3,000	7,903	1,841	0	2,994	6,006	58,100
1938	0	0	21,216	0	0	39	8,009	10,282	1,197	0	2,993	5,997	49,733
1998	0	0	0	19,380	-3	7,782	9,445	7,046	1,012	0	2,993	5,997	53,652
1997	0	1,612	0	4,729	-1	0	0	0	0	0	0	0	6,340
1956	0	0	37,840	38,536	-5	0	5,578	0	8,413	0	2,994	5,997	99,353
1967	0	0	0	0	0	16,553	3,000	19,378	921	0	2,994	5,997	48,843
1980	0	0	0	17,403	-3	4,947	5,577	6,000	0	0	2,994	5,997	42,915
1986	0	0	9	0	40,478	11,649	13,634	7,236	1,197	0	0	8,974	83,177
1952	0	0	0	0	30,875	-1	3,000	16,030	1,197	0	2,994	5,997	60,092
1978	0	0	0	0	0	0	0	0	76,662	0	0	1,901	78,563
1965	0	0	0	170,933	5,134	0	11,075	0	0	0	7,341	6,007	200,490
1958	0	0	0	0	0	25,042	3,001	15,426	1,013	0	2,993	5,997	53,472
1993	0	0	0	0	0	0	0	0	95,016	61,107	24,874	10,886	191,883
1941	0	0	0	15,508	-2	0	3,000	0	7,853	0	2,994	5,997	35,350
1951	0	0	140,857	-3	0	0	0	0	0	0	0	0	140,854
1922	0	0	0	0	11,163	7,312	8,524	0	16,332	0	2,994	5,997	52,322
1984	0	2,518	1	0	0	0	0	0	0	0	0	0	2,519
1943	0	0	1,606	0	0	4,889	6,867	0	8,413	0	2,994	5,997	30,766
1942	0	0	1,607	3,047	-1	0	8,524	6,000	0	0	2,994	5,997	28,168
1996	0	0	0	0	2,529	0	5,118	6,000	0	0	0	8,974	22,621
1974	0	10,551	0	0	0	6,659	7,603	0	8,413	0	2,993	5,997	42,216
1940	0	0	0	0	0	34,432	7,881	0	0	0	0	0	42,313
1936	0	0	0	0	212,095	4,633	6,756	0	0	0	0	0	223,484
1932	0	0	0	0	0	0	0	0	0	0	0	0	0
1935	0	0	0	0	0	0	0	0	0	0	0	0	0
1999	0	0	1,607	0	0	1,902	10,708	0	0	0	0	0	14,217
1945	0	0	0	0	25,070	-1	4,026	0	0	0	0	0	29,095
1927	0	0	0	0	0	0	0	0	34,956	0	9,765	19,149	63,870
1963	0	0	0	0	0	0	0	0	0	0	0	0	0
1975	0	0	0	0	1,608	0	8,524	0	11,264	0	2,993	5,996	30,385
1973	0	0	0	0	0	14,881	3,620	0	60,484	0	0	0	78,985
1921	0	0	0	0	10,550	1,295	3,379	0	0	0	0	0	15,224
1937	0	0	0	0	25,974	2,039	8,664	0	0	0	0	0	36,677
1970	0	0	1,608	2,855	-1	0	0	0	0	0	0	0	4,462
2000	0	0	0	0	18,913	0	3,000	0	11,583	0	0	0	33,496
1925	0	0	0	0	0	0	0	0	0	0	0	0	0
1979	0	0	0	8,659	-1	4,729	3,000	6,000	0	0	0	0	22,387
1946	0	23,867	0	0	0	1,237	4,040	0	0	0	0	0	29,144
1923	0	0	1,607	0	0	0	6,038	0	0	0	0	0	7,645
1962	0	0	0	0	0	0	0	0	0	0	0	0	0
1971	0	0	0	0	0	22,086	0	0	0	0	0	0	22,086
1950	0	0	0	0	0	0	0	0	0	0	0	0	0
1953	0	0	0	1,607	0	0	0	0	0	0	0	0	1,607
1928	0	21,878	34,469	3,128	14,851	-1	0	0	0	0	0	0	74,325
1954	0	0	0	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0	0	0	0
1957	0	0	0	0	0	1,607	0	0	0	0	0	0	1,607
1948	0	0	0	0	0	0	0	0	0	0	0	0	0
1989	0	0	0	0	0	0	0	0	0	0	0	0	0
1966	0	1,607	523	0	16,091	-6,452	0	0	0	0	0	0	11,769
1944	0	0	0	0	0	1,608	0	0	0	0	0	0	1,608
1949	0	0	0	0	0	0	0	0	0	0	0	0	0
1985	0	0	0	0	0	0	0	0	0	0	0	0	0
1972	0	0	0	0	0	0	0	0	0	0	0	0	0
1930	0	0	0	0	0	0	0	0	0	0	0	0	0
1964	0	0	0	0	0	0	0	0	0	0	0	0	0
1955	0	0	0	0	0	0	0	0	0	0	0	0	0
1926	0	0	0	0	0	0	0	0	0	0	0	0	0
1933	0	0	0	0	0	0	0	0	0	0	0	0	0
1991	0	0	0	0	0	0	0	0	0	0	0	0	0
2001	0	0	0	0	0	10,551	2,311	0	0	0	0	0	12,862
1947	0	0	0	0	0	0	0	0	0	0	0	0	0
1960	0	0	0	0	0	0	0	0	0	0	0	0	0
1981	0	0	0	0	0	1,607	0	0	0	0	0	0	1,607
1968	0	0	0	0	0	1,608	0	0	0	0	0	0	1,608
1959	0	0	0	0	1,607	0	0	0	0	0	0	0	1,607
1939	0	0	0	631	977	0	0	0	0	0	0	0	1,608
1929	0	0	0	0	0	0	0	0	0	0	0	0	0
1990	0	0	0	0	0	0	0	0	0	0	0	0	0
1992	0	0	0	0	0	0	0	0	0	0	0	0	0
1994	0	0	0	0	0	0	0	0	0	0	0	0	0
1988	0	0	0	0	0	0	0	0	0	0	0	0	0
1934	0	0	0	0	0	0	0	0	0	0	0	0	0
1961	0	0	0	0	0	0	0	0	0	0	0	0	0
1976	1,610	0	0	0	0	0	0	0	0	0	0	0	1,610
1987	0	0	0	0	0	0	0	0	0	0	0	0	0
1931	0	0	0	0	0	0	0	0	0	0	0	0	0
1924	0	0	0	0	0	0	0	0	0	0	0	0	0
1977	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 2.5-7
Difference in Total La Grange Release to River (Acre-feet)

Table 2.5-8
Difference in Total La Grange Release to River (Acre-feet)

Table 2.5-9

Total La Grange Release to River (Acre-feet)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	23,001	21,563	56,842	151,415	186,738	273,821	217,239	244,709	227,921	142,651	69,115	50,878	1,665,894
Above Normal	18,683	31,026	67,978	74,978	128,547	166,616	131,514	79,097	84,366	27,869	21,031	21,212	852,917
Normal	18,264	17,579	35,872	51,349	74,834	104,445	85,081	78,304	20,306	9,992	9,992	9,670	515,686
Below Normal	17,105	13,863	19,925	15,874	17,549	21,794	34,964	33,554	4,025	4,160	4,160	4,025	190,997
Dry	17,340	13,842	14,866	13,990	15,673	20,873	21,732	21,240	3,347	3,459	3,459	3,347	153,168
All Years	18,855	19,645	39,215	61,129	84,385	116,941	97,743	90,526	67,413	37,099	21,333	17,699	671,982
Total La Grange Release to River (Acre-feet) (Average within Year Type - Grouped by Unimpaired Runoff at LaGrange)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	22,901	21,463	53,092	132,916	181,173	266,954	211,640	237,532	215,975	138,831	65,042	45,019	1,592,538
Above Normal	18,683	30,258	59,409	73,887	113,696	163,096	126,954	78,391	79,235	27,869	19,400	17,441	808,318
Normal	18,264	14,720	33,517	50,334	70,441	101,554	83,097	77,929	15,802	9,992	9,992	9,670	495,309
Below Normal	17,105	13,768	19,894	15,874	16,603	21,364	34,828	33,554	4,025	4,160	4,160	4,025	189,359
Dry	17,240	13,842	14,866	13,950	15,511	20,672	21,732	21,240	3,347	3,459	3,459	3,347	152,665
All Years	18,815	18,888	36,241	57,087	79,135	114,179	95,290	88,906	63,139	36,354	20,200	15,774	644,009
Difference in Total La Grange Release to River (Acre-feet)													
(Average within	Type - Gr	ed by Un	ired Runof	at LaGrang							d WSIP	s WSIP	
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	100	101	3,751	18,499	5,565	6,867	5,600	7,178	11,946	3,819	4,072	5,859	73,357
Above Normal	0	769	8,569	1,091	14,851	3,519	4,561	706	5,131	0	1,631	3,771	44,599
Normal	0	2,859	2,355	1,016	4,393	2,892	1,984	375	4,504	0	0	0	20,377
Below Normal	0	95	31	0	947	430	136	0	0	0	0	0	1,638
Dry	101	0	0	39	162	201	0	0	0	0	0	0	503
All Years	39	757	2,974	4,042	5,250	2,762	2,453	1,620	4,274	745	1,133	1,925	27,973

Table 2.5-10

Total La Grange Release to River (Acre-feet)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	23,001	21,563	56,842	151,415	186,738	273,821	217,239	244,709	227,921	142,651	69,115	50,878	1,665,894
Above Normal	18,683	31,026	67,978	74,978	128,547	166,616	131,514	79,097	84,366	27,869	21,031	21,212	852,917
Normal	18,264	17,579	35,872	51,349	74,834	104,445	85,081	78,304	20,306	9,992	9,992	9,670	515,686
Below Normal	17,105	13,863	19,925	15,874	17,549	21,794	34,964	33,554	4,025	4,160	4,160	4,025	190,997
Dry	17,340	13,842	14,866	13,990	15,673	20,873	21,732	21,240	3,347	3,459	3,459	3,347	153,168
All Years	18,855	19,645	39,215	61,129	84,385	116,941	97,743	90,526	67,413	37,099	21,333	17,699	671,982
Total La Grange Release to River (Acre-feet)													
(Average within	Type - Gr	ed by Uni	ired Runo	at LaGrang								Base	
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	22,967	21,290	56,692	151,293	184,772	274,592	215,643	242,749	232,124	143,744	66,539	45,865	1,658,271
Above Normal	18,683	30,167	66,265	74,511	130,859	168,855	130,389	78,856	82,871	28,383	20,182	18,343	848,363
Normal	18,264	15,530	35,664	49,090	73,947	107,106	84,918	78,066	20,356	9,992	9,992	9,670	512,593
Below Normal	17,105	13,768	19,962	15,874	18,305	21,364	34,828	33,554	4,025	4,160	4,160	4,025	191,130
Dry	17,240	13,842	14,866	13,950	15,511	20,672	21,732	21,240	3,347	3,459	3,459	3,347	152,665
All Years	18,828	18,994	38,798	60,559	84,433	117,947	97,139	90,047	67,933	37,419	20,654	16,126	668,876
Difference in Total La Grange Release to River (Acre-feet)													
(Average within	Type - Gr	ed by Uni	ired Run	at LaGrang							d WSIP	us Base	
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	35	273	150	122	1,966	-772	1,596	1,961	-4,203	-1,094	2,576	5,013	7,624
Above Normal	0	859	1,713	467	-2,312	-2,239	1,126	241	1,496	-514	848	2,869	4,554
Normal	0	2,049	208	2,260	887	-2,660	163	238	-50	0	0	0	3,093
Below Normal	0	95	-37	0	-756	430	136	0	0	0	0	0	-132
Dry	101	0	0	39	162	201	0	0	0	0	0	0	503
All Years	26	651	417	569	-48	-1,005	605	479	-520	-320	678	1,573	3,106

2.6 Calaveras and San Antonio Reservoirs, Alameda Creek, and Downstream

Compared to the WSIP setting, the operation of Calaveras Reservoir in the alternative setting is almost identical. Figure 2.6-1 illustrates a chronological trace of the simulation of Calaveras Reservoir storage and stream releases from Calaveras Dam. Shown in Figure 2.6-1 are the results for the WSIP, alternative, and base settings. In recognition of the different levels of systemwide deliveries served in each setting, the near identical operation of Calaveras Reservoir resulting from the two settings is an indication that Calaveras Reservoir operations are mostly influenced by the principles that manage local watershed production. The slight differences in reservoir operation are the result of modeling assumptions that balance reservoir storage among SFPUC reservoirs and the selection of the monthly SJPL conveyance rate. It is anticipated that the difference in Calaveras Reservoir operation during actual operations would be minimal, if any difference occurred at all. The difference in storage between the alternative and WSIP settings and the base setting is due to the restoration of the operational capacity of Calaveras Reservoir. Under both the alternative and WSIP settings, the full capacity of Calaveras Reservoir would be available, and a greater range in storage operation would occur. Figure 2.6-2 illustrates the average monthly storage in Calaveras Reservoir for the 82 -year simulation, and the range in storage for each month for the alternative and base settings.

Figure 2.6-1

Calaveras Reservoir Storage and Stream Release

APPENDIX O2

Figure 2.6-2

There would be almost identical spills from Calaveras Reservoir for the alternative and WSIP settings. Both the alternative and WSIP settings have fishery releases (1997 CDFG MOU) that are not included in the base setting. Table 2.6-1 illustrates the difference in releases to Calaveras Creek between the alternative and WSIP settings. The difference in flow (for the reach below Calaveras Reservoir to the confluence with Alameda Creek) during December through April is due to the flow bypass measure at ACDD that is associated with the Modified WSIP setting. The reductions in flow in this reach of stream are an indication that bypass flow is being provided at the diversion dam and is subsequently used to contribute to the 1997 MOU flow requirement at the confluence. The bypass flow does not exist in the WSIP setting, and additional releases would be required from Calaveras Reservoir to meet the 1997 MOU flow requirement. Supplementing the Figure 2.6-1 representation of Calaveras Dam stream releases and Table 2.6-1 is Table 2.6-2, which illustrates releases for the alternative and WSIP settings, and the difference in releases between the two. Table 2.6-3 provides the same form of information for the alternative and base settings. The notable difference in releases between the alternative and base settings is the addition of the required flows to satisfy the 1997 MOU and the reduction of stream releases during wetter-year, wetter-season flows due to the restoration of Calaveras Reservoir operational capacity.

The bypass flow measure at the ACDD is modeled as a release at the diversion dam of 10 cfs or inflow to the diversion dam, whichever is less, for the months December through April. Table 2.6-4 illustrates the flow past the ACDD for the alternative setting, which includes the bypass measure. Table 2.6-5 illustrates the flow for the WSIP setting, and Table 2.6-6 illustrates the difference in flow below the ACDD between the alternative and WSIP settings. As seen in Table 2.6-4, flow past the diversion dam occurs regularly during the December through April period, its magnitude either as an explicit bypass of up to 10 cfs (approximately 600 acre-feet per month), or more during rain-runoff events when either Calaveras Reservoir is not receiving water from Alameda Creek or the runoff at the diversion dam exceeds the diversion tunnel capacity. Table 2.6-6 illustrates the difference in flow below the diversion dam between the two settings. The positive values (up to 10 cfs) indicate the measure's passage of flow that would otherwise not occur in the WSIP setting. The few exceptions of reduced flow indicate periods when the alternative setting would divert more water to Calaveras Reservoir from the diversion dam; however, review of the remaining flow below the diversion dam (Table 2.6-4) shows that it would still be in excess of the minimum bypass flow.

Table 2.6-7 illustrates the difference in flow below the ACDD between the alternative and base settings. The seasonal increase in flow past the diversion dam in the alternative setting is again apparent. The reductions in flow below the diversion dam are due to the additional diversions to Calaveras Reservoir resulting from the restoration of reservoir operating capacity. Table 2.6-8 and Table 2.6-9 illustrate the flow past the ACDD, comparing the alternative, WSIP, and base settings by year type and the average of all years.

APPENDIX O2

Table 2.6-1
Difference in Total Stream Release from Calaveras Reservoir (Acre-feet)

APPENDIX O2

Table 2.6-2

Total Stream Release from Calaveras Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)					Feb	Mar	Apr	May	Jun	Jul	Modified WSIP		
	Oct	Nov	Dec	Jan							Aug	Sep	WY Total
Wet	429	246	941	4,855	14,418	9,708	4,977	255	386	417	425	415	37,472
Above Normal	425	258	42	543	2,970	2,524	446	327	396	424	428	417	9,199
Normal	429	275	93	168	286	69	6	370	408	428	430	417	3,377
Below Normal	428	275	95	194	366	108	51	389	411	430	430	417	3,594
Dry	429	292	151	485	746	402	215	407	416	430	430	417	4,819
All Years	428	269	260	1,228	3,706	2,532	1,117	350	403	426	428	417	11,563
Total Stream Release from Calaveras Reservoir (Acre-feet)													
(Average within	- G	by 5	servoi									WSIP	
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	429	246	998	4,985	14,425	9,862	5,085	255	386	417	425	415	37,928
Above Normal	425	258	172	746	3,196	2,688	606	327	396	424	428	417	10,082
Normal	429	275	194	548	725	506	265	370	408	428	430	417	4,995
Below Normal	428	275	246	672	876	596	345	389	411	430	430	417	5,515
Dry	429	292	281	778	1,044	747	375	407	416	430	430	417	6,044
All Years	428	269	374	1,526	4,004	2,850	1,314	350	403	426	428	417	12,788
Difference in Total Stream Release from Calaveras Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff) Modified WSIP minus WSIP													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	-46	-130	-7	-155	-109	0	0	0	0	0	-446
Above Normal	0	0	-130	-203	-227	-164	-160	0	0	0	0	0	-883
Normal	0	0	-102	-381	-439	-438	-259	0	0	0	0	0	-1,618
Below Normal	0	0	-150	-478	-510	-488	-294	0	0	0	0	0	-1,921
Dry	0	0	-130	-293	-298	-344	-159	0	0	0	0	0	-1,225
All Years	0	0	-112	-298	-298	-318	-197	0	0	0	0	0	-1,223

Table 2.6-3

Total Stream Release from Calaveras Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)					Feb	Mar	Apr	May	Jun	Jul	Modified WSIP		WY Total							
	Oct	Nov	Dec	Jan							Aug	Sep								
Wet	429	246	941	4,855	14,418	9,708	4,977	255	386	417	425	415	37,472							
Above Normal	425	258	42	543	2,970	2,524	446	327	396	424	428	417	9,199							
Normal	429	275	93	168	286	69	6	370	408	428	430	417	3,377							
Below Normal	428	275	95	194	366	108	51	389	411	430	430	417	3,594							
Dry	429	292	151	485	746	402	215	407	416	430	430	417	4,819							
All Years	428	269	260	1,228	3,706	2,532	1,117	350	403	426	428	417	11,563							
Total Stream Release from Calaveras Reservoir (Acre-feet)																				
(Average within	- Gr	by 5	eservoi	off)								Base								
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total							
Wet	0	0	1,741	9,267	16,622	9,968	5,024	0	0	0	0	0	42,623							
Above Normal	0	0	184	2,685	5,918	3,096	459	0	0	0	0	0	12,342							
Normal	0	0	216	364	898	353	0	0	0	0	0	0	1,831							
Below Normal	0	0	0	0	0	0	0	0	0	0	0	0	0							
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0							
All Years	0	0	420	2,436	4,645	2,656	1,076	0	0	0	0	0	11,233							
Difference in Total Stream Release from Calaveras Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)																				
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total							
Wet	429	246	-808	-4,412	-2,203	-260	-48	255	386	417	425	415	-5,159							
Above Normal	425	258	-142	-2,141	-2,948	-572	-13	327	396	424	428	417	-3,142							
Normal	429	275	-123	-196	-613	-284	6	370	408	428	430	417	1,545							
Below Normal	428	275	95	194	366	108	51	389	411	430	430	417	3,594							
Dry	429	292	151	485	746	402	215	407	416	430	430	417	4,819							
All Years	428	269	-162	-1,208	-939	-124	42	350	403	426	428	417	329							

Table 2.6-4
Flow Passing Alameda Creek Diversion Dam (Acre-feet)

Table 2.6-5
Flow Passing Alameda Creek Diversion Dam (Acre-feet)

APPENDIX O2

Table 2.6-6
Difference in Flow Passing Alameda Creek Diversion Dam (Acre-feet) Modified WSIP minus WSIP

Table 2.6-7
Difference in Flow Passing Alameda Creek Diversion Dam (Acre-feet) Modified WSIP minus Base

Table 2.6-8

Flow Passing Alameda Creek Diversion Dam (Acre-feet)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	28	1,859	6,509	8,086	5,866	3,258	173	0	0	0	0	25,779
Above Normal	7	23	1,013	2,755	4,074	3,398	1,318	0	0	0	0	0	12,589
Normal	0	6	655	735	1,314	1,017	618	0	0	0	0	0	4,345
Below Normal	0	0	332	547	614	790	387	0	0	0	0	0	2,669
Dry	0	0	191	293	355	344	201	0	0	0	0	0	1,385
All Years	1	12	807	2,155	2,875	2,278	1,149	34	0	0	0	0	9,311
Flow Passing Alameda Creek Diversion Dam (Acre-feet)													
(Average within	- Gr	by 5	Reservo									VSIP	
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	28	1,379	6,269	7,982	5,727	2,960	173	0	0	0	0	24,518
Above Normal	7	23	591	2,457	3,735	3,129	959	0	0	0	0	0	10,903
Normal	0	6	585	260	796	459	113	0	0	0	0	0	2,219
Below Normal	0	0	18	45	102	229	0	0	0	0	0	0	394
Dry	0	0	0	0	57	0	0	0	0	0	0	0	58
All Years	1	12	509	1,793	2,520	1,903	798	34	0	0	0	0	7,570
Difference in Flow Passing Alameda Creek Diversion Dam (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	471	239	104	139	298	0	0	0	0	0	1,252
Above Normal	0	0	422	298	339	269	359	0	0	0	0	0	1,686
Normal	0	0	70	475	518	558	506	0	0	0	0	0	2,125
Below Normal	0	0	315	501	512	560	387	0	0	0	0	0	2,275
Dry	0	0	191	293	298	344	201	0	0	0	0	0	1,328
All Years	0	0	296	362	356	375	351	0	0	0	0	0	1,739

Table 2.6-9

Flow Passing Alameda Creek Diversion Dam (Acre-feet)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	28	1,859	6,509	8,086	5,866	3,258	173	0	0	0	0	25,779
Above Normal	7	23	1,013	2,755	4,074	3,398	1,318	0	0	0	0	0	12,589
Normal	0	6	655	735	1,314	1,017	618	0	0	0	0	0	4,345
Below Normal	0	0	332	547	614	790	387	0	0	0	0	0	2,669
Dry	0	0	191	293	355	344	201	0	0	0	0	0	1,385
All Years	1	12	807	2,155	2,875	2,278	1,149	34	0	0	0	0	9,311
Flow Passing Alameda Creek Diversion Dam (Acre-feet)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	28	1,379	6,967	8,099	5,757	2,972	130	0	0	0	0	25,331
Above Normal	7	23	1,126	3,672	5,294	3,096	692	0	0	0	0	0	13,911
Normal	0	6	954	868	1,870	906	126	0	0	0	0	0	4,731
Below Normal	0	0	18	45	102	229	0	0	0	0	0	0	394
Dry	0	0	0	0	57	0	0	0	0	0	0	0	58
All Years	1	12	692	2,299	3,075	1,989	748	26	0	0	0	0	8,843
Difference in Flow Passing Alameda Creek Diversion Dam (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff) Modified WSIP minus Base													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	471	-458	-13	109	287	43	0	0	0	0	438
Above Normal	0	0	-112	-917	-1,220	301	626	0	0	0	0	0	-1,322
Normal	0	0	-300	-133	-556	111	492	0	0	0	0	0	-386
Below Normal	0	0	315	501	512	560	387	0	0	0	0	0	2,275
Dry	0	0	191	293	298	344	201	0	0	0	0	0	1,328
All Years	0	0	113	-144	-200	289	401	8	0	0	0	0	467

Comparing the alternative and WSIP settings, differences in releases from Calaveras Dam to the stream and differences in spills and bypass flows at the ACDD result in differences in flow below the Alameda Creek and Calaveras Creek confluence between the settings. Table 2.6-10 illustrates the flow below the confluence for the alternative and WSIP settings. The flow would be generally the same, with slightly additional flow occurring during December and April due to the bypass flows. Fishery releases for the 1997 MOU are assumed in both of the settings. Table 2.6-11 provides the same form of information for the alternative and base settings. The notable differences between the alternative and base settings (comparable to the differences between the WSIP and base settings) are the addition of required stream flows for the 1997 MOU and the reduction of wetter-year, wet-season flows due to the restoration of Calaveras Reservoir storage.

Table 2.6-10

Flow below Alameda/Calaveras Creek Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)					Feb	Mar	Apr	May	Jun	Jul	Modified WSIP		WY Total
	Oct	Nov	Dec	Jan							Aug	Sep	
Wet	430	326	3,145	12,372	23,692	16,559	8,836	605	417	429	429	417	67,658
Above Normal	437	326	1,299	3,896	7,820	6,484	2,075	430	418	430	429	417	24,461
Normal	429	304	974	1,171	1,985	1,413	782	430	417	429	430	417	9,182
Below Normal	429	297	488	882	1,215	1,118	510	430	417	430	430	417	7,063
Dry	429	298	368	813	1,168	816	460	430	417	430	430	417	6,475
All Years	431	310	1,246	3,792	7,111	5,242	2,502	464	417	430	429	417	22,792
Flow below Alameda/Calaveras Creek Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	430	326	2,721	12,263	23,595	16,575	8,647	605	417	429	429	417	66,854
Above Normal	437	326	1,007	3,801	7,708	6,379	1,876	430	418	430	429	417	23,658
Normal	429	304	1,006	1,077	1,907	1,293	536	430	417	429	430	417	8,675
Below Normal	429	297	324	859	1,214	1,046	417	430	417	430	430	417	6,709
Dry	429	298	307	813	1,168	816	418	430	417	430	430	417	6,373
All Years	431	310	1,063	3,728	7,053	5,185	2,349	464	417	430	429	417	22,276
Difference in Flow below Alameda/Calaveras Creek Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)											WSIP	NSIP	
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	424	109	97	-16	190	0	0	0	0	0	805
Above Normal	0	0	293	95	112	105	198	0	0	0	0	0	803
Normal	0	0	-32	94	79	120	246	0	0	0	0	0	507
Below Normal	0	0	164	23	1	72	93	0	0	0	0	0	354
Dry	0	0	61	0	0	0	42	0	0	0	0	0	103
All Years	0	0	183	64	58	57	154	0	0	0	0	0	516

Table 2.6-11

Flow below Alameda/Calaveras Creek Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)					Feb	Mar	Apr	May	Jun	Jul	Modified WSIP		
	Oct	Nov	Dec	Jan							Aug	Sep	WY Total
Wet	430	326	3,145	12,372	23,692	16,559	8,836	605	417	429	429	417	67,658
Above Normal	437	326	1,299	3,896	7,820	6,484	2,075	430	418	430	429	417	24,461
Normal	429	304	974	1,171	1,985	1,413	782	430	417	429	430	417	9,182
Below Normal	429	297	488	882	1,215	1,118	510	430	417	430	430	417	7,063
Dry	429	298	368	813	1,168	816	460	430	417	430	430	417	6,475
All Years	431	310	1,246	3,792	7,111	5,242	2,502	464	417	430	429	417	22,792
Flow below Alameda/Calaveras Creek Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	1	80	3,465	17,243	25,909	16,711	8,598	307	30	12	4	2	72,361
Above Normal	12	68	1,554	6,954	11,987	6,754	1,462	103	22	6	2	1	28,926
Normal	1	29	1,397	1,501	3,154	1,586	284	60	9	2	0	0	8,022
Below Normal	1	22	78	186	338	450	72	41	7	0	0	0	1,195
Dry	1	6	26	35	124	69	43	23	1	0	0	0	328
All Years	3	41	1,292	5,145	8,250	5,077	2,060	106	14	4	1	1	21,993
Difference in Flow below Alameda/Calaveras Creek Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff) Modified WSIP minus Base													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	429	246	-337	-4,871	-2,216	-152	239	298	386	417	425	415	-4,721
Above Normal	425	258	-254	-3,058	-4,168	-270	612	327	396	424	428	417	-4,465
Normal	429	275	-423	-330	-1,168	-173	498	370	408	428	430	417	1,160
Below Normal	428	275	410	695	877	668	438	389	411	430	430	417	5,869
Dry	429	292	342	778	1,044	747	417	407	416	430	430	417	6,147
All Years	428	269	-49	-1,353	-1,139	165	443	358	403	426	428	417	796

A flow recapture facility in Alameda Creek below Calaveras Reservoir is incorporated in the alternative and WSIP settings. This facility is assumed to recapture flows explicitly released for the 1997 MOU. The effect of the recapture would be a reduction in the flow below the confluence of Alameda and Calaveras Creeks, but only to the extent that releases were explicitly made for the 1997 MOU. Flows below this diversion have been estimated and noted as the flow above the Alameda Creek and San Antonio Creek confluence. Table 2.6-12 illustrates the flow at this location for the alternative and WSIP settings. The flows identified at this location are indicative of flow occurring below the confluence of Alameda and Calaveras Creeks (described above) with the addition of estimated stream accretions between the Alameda and Calaveras Creek confluence and the Alameda and San Antonio Creek confluence, less the water assumed to be recaptured (diverted) by the SFPUC from the creek. The flow changes at this location for the comparison of the WSIP and alternative settings are considered insubstantial and may not occur. The differences during the December through April period of wetter years indicate that too much of the spills/releases past the diversion dam were counted as 1997 MOU releases and were subsequently recaptured. The modeled accounting tends to overstate the amount of water allowed to be recaptured. A more precise accounting method would tend to minimize the differences between the alternative and WSIP settings. Table 2.6-13 provides the same form of information for the alternative and base settings.

Table 2.6-12

Alameda Creek Flow abv San Antonio Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)					Feb	Mar	Apr	May	Jun	Jul	Modified WSIP								
	Oct	Nov	Dec	Jan							Aug	Sep	WY Total						
Wet	6	154	3,088	13,218	24,845	17,207	9,016	556	76	33	15	9	68,224						
Above Normal	19	150	1,201	4,082	8,259	6,568	1,897	217	54	20	9	6	22,482						
Normal	7	64	880	869	1,730	1,192	432	128	28	9	4	3	5,344						
Below Normal	7	56	183	404	678	717	154	91	20	5	3	2	2,321						
Dry	6	19	70	98	231	145	91	48	9	3	2	2	724						
All Years	9	89	1,075	3,698	7,083	5,129	2,286	207	38	14	7	4	19,638						
Alameda Creek Flow abv San Antonio Confluence (Acre-feet)(Average within Year Type - Grouped by 5 Local Reservoir Runoff)																			
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total						
Wet	6	154	3,113	13,610	25,199	17,720	9,297	556	76	33	15	9	69,788						
Above Normal	19	150	1,203	4,350	8,422	6,871	2,127	217	54	20	9	6	23,450						
Normal	7	64	1,131	909	1,740	1,219	466	128	28	9	4	3	5,706						
Below Normal	7	56	183	404	678	717	154	91	20	5	3	2	2,321						
Dry	6	19	70	98	231	145	91	48	9	3	2	2	724						
All Years	9	89	1,129	3,838	7,188	5,297	2,396	207	38	14	7	4	20,215						
Difference in Alameda Creek Flow abv San Antonio Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff) Modified WSIP minus WSIP																			
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total						
Wet	0	0	-24	-392	-354	-513	-281	0	0	0	0	0	-1,564						
Above Normal	0	0	-2	-268	-163	-303	-230	0	0	0	0	0	-967						
Normal	0	0	-251	-40	-10	-26	-34	0	0	0	0	0	-361						
Below Normal	0	0	0	0	0	0	0	0	0	0	0	0	0						
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0						
All Years	0	0	-54	-140	-105	-168	-109	0	0	0	0	0	-576						

Table 2.6-13

Alameda Creek Flow abv San Antonio Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)					Feb	Mar	Apr	May	Jun	Jul	Modified WSIP		
	Oct	Nov	Dec	Jan							Aug	Sep	WY Total
Wet	6	154	3,088	13,218	24,845	17,207	9,016	556	76	33	15	9	68,224
Above Normal	19	150	1,201	4,082	8,259	6,568	1,897	217	54	20	9	6	22,482
Normal	7	64	880	869	1,730	1,192	432	128	28	9	4	3	5,344
Below Normal	7	56	183	404	678	717	154	91	20	5	3	2	2,321
Dry	6	19	70	98	231	145	91	48	9	3	2	2	724
All Years	9	89	1,075	3,698	7,083	5,129	2,286	207	38	14	7	4	19,638
Alameda Creek Flow abv San Antonio Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	6	154	3,973	18,714	27,673	17,977	9,358	513	76	33	15	9	78,502
Above Normal	19	150	1,922	7,772	13,068	7,467	1,861	217	54	20	9	6	32,566
Normal	7	64	1,716	1,881	3,712	2,007	479	128	28	9	4	3	10,037
Below Normal	7	56	183	404	678	717	154	91	20	5	3	2	2,321
Dry	6	19	70	98	231	145	91	48	9	3	2	2	724
All Years	9	89	1,560	5,733	9,019	5,624	2,355	198	38	14	7	4	24,650
Difference in Alameda Creek Flow abv San Antonio Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	-885	-5,496	-2,828	-771	-341	43	0	0	0	0	-10,278
Above Normal	0	0	-722	-3,690	-4,809	-899	35	0	0	0	0	0	-10,084
Normal	0	0	-837	-1,012	-1,982	-815	-47	0	0	0	0	0	-4,693
Below Normal	0	0	0	0	0	0	0	0	0	0	0	0	0
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	-485	-2,035	-1,936	-496	-68	8	0	0	0	0	-5,012

Compared to the WSIP setting, the alternative's San Antonio Reservoir operation would draw less from storage on an annual basis, particularly during cyclic maintenance. Figure 2.6-3 illustrates a chronological trace of the simulation of San Antonio Reservoir storage and stream releases from San Antonio Dam. Shown in Figure 2.6-3 are the results for the WSIP, alternative, and base settings. The difference in San Antonio Reservoir storage between the alternative and WSIP settings is mostly caused by the lesser demand of the alternative. Considering that Calaveras Reservoir storage is essentially the same between the settings, the difference in San Antonio Reservoir storage is indicative of the operational strategy to affect storage in San Antonio Reservoir more than storage in the other SFPUC Bay Area reservoirs. San Antonio Reservoir would retain more storage in the alternative setting compared to the WSIP setting.

The difference in storage between the alternative and WSIP settings and the base setting is due to the restoration of the operational capacity of Calaveras Reservoir. In the base setting, the limited operating storage capacity at Calaveras Reservoir leads to a different operation at San Antonio Reservoir, one that retains relatively more stored water for system demands when the draw from Calaveras Reservoir is constrained due to limited storage. There is also a notable difference in storage operation between the alternative and WSIP settings and the base setting due to assumed maintenance. Assumed systematic maintenance of Hetch Hetchy conveyance facilities constrains diversions to the Bay Area from Hetch Hetchy every year, and particularly during every fifth year, in the WSIP and alternative settings.

Figure 2.6-3
San Antonio Reservoir Storage and Stream Release

APPENDIX O2

The reduction in diversions from Hetch Hetchy during these periods is accommodated in the system by drawing additional water from the Bay Area reservoirs. The proportionate share of this operation is evident in the tracing of San Antonio Reservoir storage for the alternative and WSIP settings. Figure 2.6-4 illustrates the average monthly storage in San Antonio Reservoir for the 82-year simulation, and the range in storage for each month for the alternative and base settings. Compared to the base setting, the alternative would draw less storage from San Antonio Reservoir during many years, typically retaining a fuller reservoir, but would draw more storage during the every-fifth-year maintenance cycle.

Figure 2.6-4

There is very little anticipated change in stream releases below San Antonio Reservoir between the alternative and WSIP settings. Table 2.6-14 illustrates the modeled releases to San Antonio Creek from San Antonio Reservoir for the two settings and the differences for the average release during a year type. With a fuller reservoir operation at times, as seen in Figure 2.6-3, it is expected that there would be a decrease in the ability to regulate reservoir inflow and avoid stream releases. Given the sometimes rigid constraints within the modeling assumptions, the model will overestimate the frequency and magnitude of stream releases from San Antonio Reservoir under any of the investigated settings. The flexibility that occurs in actual operations would likely avoid most of the releases represented by the model. The modeled stream releases from San Antonio Reservoir and the difference between releases for the alternative and base settings are shown in Table 2.6-15. The differences between the two settings reflect a general decrease in modeled releases in the alternative setting. This modeled circumstance reflects the different resulting storage operation between the two settings, as seen in Figure 2.6-3. In most instances, the alternative setting storage at San Antonio Reservoir during a period would be equal to or lower than that projected for the base setting during the same period. This circumstance could lead to an occasionally greater modeled release for the base setting, which is reflected in the results. As described above, the model will overestimate the frequency and magnitude of releases from San Antonio Reservoir, and the actual releases from the reservoir in any setting and the difference between settings are expected to be minor.

Flow below the confluence of Alameda and San Antonio Creeks is influenced by releases from San Antonio Creek and flow arriving at the location from Alameda Creek, which includes upstream impairment by SFPUC operations and facilities. Table 2.6-16 illustrates the flow below the confluence for the alternative and WSIP settings, and the differences in flow between the two. The differences in flow between the alternative and WSIP settings at this location are the net sum of the differences identified for flow reaching the location from Alameda Creek and from San Antonio Creek. The difference in flow from upstream in Alameda Creek was previously identified as insubstantial. Along with the conclusion that flow differences in San Antonio Creek would not be substantial, modeled differences below the confluence are also considered insubstantial.

APPENDIX O2

Table 2.6-14

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	106	1,534	3,265	2,891	960	66	0	0	0	0	8,823
Above Normal	0	0	0	487	1,593	748	193	22	0	0	0	0	3,043
Normal	0	0	0	368	62	61	99	3	0	0	0	0	594
Below Normal	0	0	0	0	0	0	12	0	0	0	0	0	12
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	21	472	980	731	249	18	0	0	0	0	2,471
Total Stream Release from San Antonio Reservoir (Acre-feet)(Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	44	1,208	3,251	1,558	658	151	0	0	0	0	6,870
Above Normal	0	0	0	442	1,381	158	192	62	0	0	0	0	2,235
Normal	0	0	11	287	78	6	13	0	0	0	0	0	395
Below Normal	0	0	0	0	0	0	4	0	0	0	0	0	4
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	11	383	936	338	172	42	0	0	0	0	1,882
Difference in Total Stream Release from San Antonio Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	62	326	14	1,333	302	-85	0	0	0	0	1,953
Above Normal	0	0	0	45	212	590	1	-40	0	0	0	0	808
Normal	0	0	-11	81	-16	56	86	3	0	0	0	0	199
Below Normal	0	0	0	0	0	0	8	0	0	0	0	0	8
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	10	89	44	393	78	-24	0	0	0	0	589

Table 2.6-15

Total Stream Release from San Antonio Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	106	1,534	3,265	2,891	960	66	0	0	0	0	8,823
Above Normal	0	0	0	487	1,593	748	193	22	0	0	0	0	3,043
Normal	0	0	0	368	62	61	99	3	0	0	0	0	594
Below Normal	0	0	0	0	0	0	12	0	0	0	0	0	12
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	21	472	980	731	249	18	0	0	0	0	2,471
Total Stream Release from San Antonio Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	101	1,322	3,669	3,288	1,398	94	0	0	0	0	9,872
Above Normal	0	0	26	687	1,909	1,487	116	58	0	0	0	0	4,283
Normal	0	0	7	370	441	237	65	0	0	0	0	0	1,120
Below Normal	0	0	0	0	41	0	0	0	0	0	0	0	41
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	26	472	1,206	996	309	30	0	0	0	0	3,041
Difference in Total Stream Release from San Antonio Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	5	213	-404	-398	-438	-28	0	0	0	0	-1,049
Above Normal	0	0	-26	-200	-316	-739	78	-36	0	0	0	0	-1,240
Normal	0	0	-7	-1	-379	-176	34	3	0	0	0	0	-525
Below Normal	0	0	0	0	-41	0	12	0	0	0	0	0	-29
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	-6	0	-227	-265	-60	-12	0	0	0	0	-570

Table 2.6-16

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	6	154	3,194	14,753	28,110	20,097	9,977	622	76	33	15	9	77,046
Above Normal	19	150	1,201	4,569	9,852	7,316	2,090	239	54	20	9	6	25,526
Normal	7	64	880	1,237	1,792	1,253	531	131	28	9	4	3	5,939
Below Normal	7	56	183	404	678	717	167	91	20	5	3	2	2,334
Dry	6	19	70	98	231	145	91	48	9	3	2	2	724
All Years	9	89	1,095	4,170	8,063	5,860	2,536	225	38	14	7	4	22,109
Flow blw San Antonio and Alameda Creek Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	6	154	3,157	14,818	28,449	19,278	9,955	707	76	33	15	9	76,658
Above Normal	19	150	1,203	4,792	9,803	7,029	2,320	279	54	20	9	6	25,685
Normal	7	64	1,142	1,197	1,818	1,224	478	128	28	9	4	3	6,101
Below Normal	7	56	183	404	678	717	159	91	20	5	3	2	2,326
Dry	6	19	70	98	231	145	91	48	9	3	2	2	724
All Years	9	89	1,140	4,221	8,124	5,635	2,567	249	38	14	7	4	22,097
Difference in Flow blw San Antonio and Alameda Creek Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff) Modified WSIP minus WSIP													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	37	-65	-339	819	22	-85	0	0	0	0	389
Above Normal	0	0	-2	-223	49	287	-230	-40	0	0	0	0	-159
Normal	0	0	-263	41	-26	29	53	3	0	0	0	0	-162
Below Normal	0	0	0	0	0	0	8	0	0	0	0	0	8
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	-44	-51	-61	225	-31	-24	0	0	0	0	13

Table 2.6-17 illustrates the same information for the alternative and base settings. Table 2.6-17 illustrates the larger differences in flow that would occur between the alternative and base settings. Those differences are particularly due to the effects of the restoration of Calaveras Reservoir operating capacity.

Table 2.6-17

Flow blw San Antonio and Alameda Creek Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)					Feb	Mar	Apr	May	Jun	Modified WSIP								
	Oct	Nov	Dec	Jan						Jul	Aug	Sep	WY Total					
Wet	6	154	3,194	14,753	28,110	20,097	9,977	622	76	33	15	9	77,046					
Above Normal	19	150	1,201	4,569	9,852	7,316	2,090	239	54	20	9	6	25,526					
Normal	7	64	880	1,237	1,792	1,253	531	131	28	9	4	3	5,939					
Below Normal	7	56	183	404	678	717	167	91	20	5	3	2	2,334					
Dry	6	19	70	98	231	145	91	48	9	3	2	2	724					
All Years	9	89	1,095	4,170	8,063	5,860	2,536	225	38	14	7	4	22,109					
Flow blw San Antonio and Alameda Creek Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)																		
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total					
Wet	6	154	4,075	20,036	31,342	21,266	10,756	607	76	33	15	9	88,374					
Above Normal	19	150	1,948	8,459	14,977	8,954	1,977	276	54	20	9	6	36,849					
Normal	7	64	1,723	2,251	4,153	2,244	544	128	28	9	4	3	11,157					
Below Normal	7	56	183	404	720	717	154	91	20	5	3	2	2,363					
Dry	6	19	70	98	231	145	91	48	9	3	2	2	724					
All Years	9	89	1,587	6,205	10,225	6,620	2,664	229	38	14	7	4	27,691					
Difference in Flow blw San Antonio and Alameda Creek Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)																		
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total					
Wet	0	0	-880	-5,283	-3,232	-1,169	-779	15	0	0	0	0	-11,327					
Above Normal	0	0	-747	-3,890	-5,125	-1,638	113	-36	0	0	0	0	-11,323					
Normal	0	0	-843	-1,014	-2,361	-991	-13	3	0	0	0	0	-5,218					
Below Normal	0	0	0	0	-41	0	12	0	0	0	0	0	-29					
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0					
All Years	0	0	-491	-2,035	-2,162	-761	-128	-4	0	0	0	0	-5,582					

2.7 Crystal Springs and San Andreas Reservoirs

There are differences in Crystal Springs Reservoir operations between the WSIP setting and the alternative and base settings. Figure 2.7-1 illustrates a chronological trace of the simulation of Crystal Springs Reservoir storage and stream releases from Crystal Springs Dam. Shown in Figure 2.7-1 are the results for the WSIP, alternative, and base settings. Fundamental to the difference in storage operations between the WSIP and alternative settings and the base setting is the restoration of reservoir operation capacity, which does not occur in the base setting. The result is the operation of Crystal Springs Reservoir at a lower maximum storage in the base setting. The alternative setting differs from the WSIP setting in that the restored capacity of the Crystal Springs Reservoir is not fully used in the alternative setting. The Crystal Springs Reservoir restricted storage measure affects the maximum storage attained in the reservoir. Rather than having the full reservoir capacity of 22.15 billion gallons to regulate and store water, the reservoir is operationally constrained to a maximum of 20.28 billion gallons.

The operation of Crystal Springs Reservoir storage is generally consistent for the alternative and WSIP settings, except in the alternative setting the reservoir is not filled to the same level of storage. The annual drawdown of the reservoir occurs to about the same level. The alternative setting would provide less carryover storage at Crystal Springs Reservoir into periods of drought and would thereby cause additional draw from other resources to serve the same delivery. The magnitude of the draw of storage from Crystal Springs Reservoir is partially dependent on the discretionary assumptions of the model that proportions the use of storage among the Bay Area system reservoirs. In actual operations, some of these differences may not occur, as system operations and prevailing hydraulic and hydrologic conditions may result in a different apportionment of effect among the reservoirs. However, the operational strategy prefers the retention of storage in the Peninsula reservoirs, similar to the strategy used by the model. Figure 2.7-2 illustrates the average monthly storage in Crystal Springs Reservoir for the 82-year simulation, and the range in storage for each month for the alternative and WSIP settings.

Figure 2.7-1
Crystal Springs Reservoir Storage and Release

APPENDIX O2

Figure 2.7-2

Figure 2.7-3 illustrates the average monthly storage in Crystal Springs Reservoir for the 82-year simulation, and the range in storage for each month for the alternative and base settings. The alternative setting would result in reservoir storage operating at a slightly higher average level during all months, and the range of operating storage would typically be smaller in the alternative setting, except during the system maintenance cycle.

Figure 2.7-3

Table 2.7-1 illustrates the modeled alternative and WSIP stream releases from Crystal Springs Reservoir and the differences between the two settings. Modeling results indicate that an increase in the occasional release could occur. The potential difference is attributed to a narrower operating range of reservoir storage in the alternative setting. This narrower range in storage would lead to a greater potential for stream releases. In actual operations, it is anticipated that system operators would manage the reservoir system whereby stream releases would be minimal under any setting, and the effect would be essentially no difference between the alternative and WSIP settings. Similarly, Table 2.7-2 illustrates the stream releases for the alternative and base settings, and the difference in modeled flows between the two settings. A lesser drawdown in Crystal Springs Reservoir storage associated with the alternative setting would lead to a decreased potential to regulate reservoir inflow, which would lead to additional risk in needing to make stream releases. However, as described above, actual system operations attempt to minimize releases under any setting, and thus the difference in releases between the alternative and base setting is minimal, if any.

Table 2.7-1

Total Stream Release from Crystal Springs Reservoir (Acre-feet) (Average within Year Type - Grouped by SJR Index Year Type)					Feb	Mar	Apr	May	Jun	Modified WSIP			
	Oct	Nov	Dec	Jan						Jul	Aug	Sep	WY Total
Wet	0	0	242	1,880	2,967	515	445	135	0	0	0	0	6,185
Above Normal	0	0	0	0	473	0	56	104	0	0	0	0	634
Below Normal	0	0	0	0	0	0	12	29	0	0	0	0	41
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
Critical	0	0	0	0	0	0	32	26	0	0	0	0	59
All Years	0	0	71	550	967	151	150	71	0	0	0	0	1,959
Total Stream Release from Crystal Springs Reservoir (Acre-feet) (Average within Year Type - Grouped by SJR Index Year Type)												VSIP	
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	0	811	1,849	488	99	55	0	0	0	0	3,303
Above Normal	0	0	0	0	35	0	0	14	0	0	0	0	49
Below Normal	0	0	0	0	0	0	0	42	0	0	0	0	42
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
Critical	0	0	0	0	0	0	33	38	0	0	0	0	71
All Years	0	0	0	237	548	143	36	33	0	0	0	0	997
Difference in Total Stream Release from Crystal Springs Reservoir (Acre-feet) (Average within Year Type - Grouped by SJR Index Year Type)									Modified WSIP minus WSIP				
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	242	1,069	1,118	27	346	80	0	0	0	0	2,882
Above Normal	0	0	0	0	438	0	56	90	0	0	0	0	585
Below Normal	0	0	0	0	0	0	12	-13	0	0	0	0	-1
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
Critical	0	0	0	0	0	0	-1	-11	0	0	0	0	-12
All Years	0	0	71	313	418	8	114	38	0	0	0	0	962

Table 2.7-2

Total Stream Release from Crystal Springs Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)					Feb	Mar	Apr	May	Jun	Modified WSIP			
	Oct	Nov	Dec	Jan						Jul	Aug	Sep	WY Total
Wet	0	0	363	2,583	4,335	772	624	65	0	0	0	0	8,743
Above Normal	0	0	0	223	582	0	62	204	0	0	0	0	1,071
Normal	0	0	0	0	0	0	47	71	0	0	0	0	118
Below Normal	0	0	0	0	0	0	30	0	0	0	0	0	30
Dry	0	0	0	0	0	0	0	9	0	0	0	0	9
All Years	0	0	71	550	967	151	150	71	0	0	0	0	1,959
Total Stream Release from Crystal Springs Reservoir (Acre-feet)													
(Average within	$\text { e }-\mathrm{Gr}$	$\text { by } 5$	servoir	off)								Base	
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	107	2,744	4,279	1,376	1,047	2	0	0	0	0	9,556
Above Normal	0	0	0	618	1,343	29	52	100	0	0	0	0	2,142
Normal	0	0	0	0	268	0	0	0	0	0	0	0	268
Below Normal	0	0	0	0	0	0	0	0	0	0	0	0	0
Dry	0	0	0	0	0	0	0	0	62	0	0	0	62
All Years	0	0	21	664	1,166	274	215	21	12	0	0	0	2,373
Difference in Total Stream Release from Crystal Springs Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	256	-161	56	-603	-423	63	0	0	0	0	-812
Above Normal	0	0	0	-396	-761	-29	10	104	0	0	0	0	-1,071
Normal	0	0	0	0	-268	0	47	71	0	0	0	0	-150
Below Normal	0	0	0	0	0	0	30	0	0	0	0	0	30
Dry	0	0	0	0	0	0	0	9	-62	0	0	0	-54
All Years	0	0	50	-113	-199	-124	-65	50	-12	0	0	0	-414

Reservoir storage at San Andreas Reservoir would follow a systematic filling and lowering each year; however, there would be slight differences in drawdown between the alternative and WSIP settings, primarily due to the coincidence of the effects of different systemwide maintenance and water demands within each setting. Figure 2.7-4 illustrates a chronological trace of the simulation of San Andreas Reservoir storage and stream releases from San Andreas Dam. Shown in Figure 2.7-4 are the results for the WSIP, alternative, and base settings. There are no projected stream releases from San Andreas Reservoir in any setting. Compared to the base setting, as Figure 2.7-4 illustrates, there would be a difference in storage operation every fifth year for the WSIP and alternative settings. These differences would be the result of Hetch Hetchy conveyance maintenance, which is assumed to occur systematically in the alternative and WSIP settings. The maintenance constrains the amount of Hetch Hetchy water supplied to serve water demands in the Bay Area. As previously discussed, during these winter periods the Bay Area reservoir system would accommodate the reduction in imported supply by serving the Bay Area water deliveries with the local watersheds' runoff and storage. At San Andreas Reservoir, serving this water demand would affect the reservoir when additional required water production at Harry Tracy WTP associated with WSIP or the alternative exceeded the ability to maintain San Andreas Reservoir storage with pumping from Crystal Springs Reservoir. In the modeling, the conveyance capacity from Crystal Springs Reservoir is assumed to be the same among all of the settings. The additional water demand of the WSIP and alternative require additional production from Harry Tracy WTP to be drawn from San Andreas Reservoir.

APPENDIX 02

Figure 2.7-4

San Andreas Reservoir Storage and Stream Release

Figure 2.7-5 illustrates the average monthly storage in San Andreas Reservoir for the 82-year simulation, and the range in storage for each month for the alternative and base settings.

Figure 2.7-5

2.8 Pilarcitos Reservoir

Coastside County Water District's (Coastside CWD) water demand and its SFPUC purchase request are projected to increase within the WSIP planning horizon of year 2030. Within the context of the 2030 purchase request of 300 mgd , Coastside CWD's portion is estimated to amount to about 3 mgd . This projected purchase request is approximately 1 mgd greater that its current purchase request. Considering the current physical constraints on deliveries from the SFPUC to Coastside CWD and the ongoing planning activities in the watershed, the precise means of serving Coastside CWD's additional purchase request, and the resultant potential changes in the operation of SFPUC facilities and their affected environs, are uncertain. ${ }^{2}$

Assuming a range of potential means to serve the additional purchase request from Coastside CWD, the following are potential hydrologic effects on SFPUC facilities and their affected environs:

- Due to limited yield from Pilarcitos Reservoir, additional diversions would be required from Crystal Springs Reservoir.
- If deliveries to Coastside CWD from Pilarcitos Reservoir increase during the fall/winter/spring seasons, these deliveries could potentially reduce storage in Pilarcitos Reservoir, thereby potentially reducing diversions to the San Mateo Creek watershed. Although the increased delivery would increase releases to Pilarcitos Creek from Pilarcitos Dam for a period of time, the increase would subsequently lead to a reduction in spills past Stone Dam.
- Additional fall/spring/winter deliveries could also potentially impair the ability to provide carryover storage into the summer season from Pilarcitos Reservoir, and subsequently lead to an acceleration of the beginning of the season when releases to Pilarcitos Creek from Pilarcitos Reservoir consist only of the passage of reservoir inflow.
- An increase in summertime deliveries from Pilarcitos Creek could also accelerate the beginning of the season when releases to Pilarcitos Creek from Pilarcitos Reservoir consist only of the passage of reservoir inflow.

In the WSIP setting, Coastside CWD is assumed to increase its SFPUC demand from 1.8 mgd (average annual purchase request) to 3 mgd . It is also assumed that the month-to-month shape of Coastside CWD's future purchase request to the SFPUC system would follow the existing monthly shape. Currently,

[^3]
APPENDIX O2

Coastside CWD can only receive a maximum of 2 mgd from the Pilarcitos Creek system due to the capacity of the connection to the Stone Tunnel, and it reaches its maximum delivery rate during the summer in the base setting. It is assumed that Coastside CWD would increase its delivery from Stone Dam following the shape of its increase in demand during the months when it currently does not reach the 2 mgd capacity (e.g., fall/winter/spring). By taking delivery of additional Pilarcitos Creek water in the fall/winter/spring, there are times when Pilarcitos Reservoir would not fill during the ensuing winter and thus the additional delivery would affect the carryover of reservoir storage into the summer. The effect is that the reservoir could empty to the spillway invert earlier in the summer than in the base setting. The effect would then cause the creek below Pilarcitos Reservoir to experience only reservoir inflow as compared to a controlled release (larger) out of the reservoir. A way to avoid or reduce this effect would be to provide extraction (pumping) of reservoir storage during the summer to maintain controlled releases to the creek in excess of reservoir inflow. The measure is modeled by allowing the Coastside CWD delivery to be met from Pilarcitos Reservoir storage even if the spillway crest has been reached, inferring pumping out water below the spillway invert.

The summer flow reduction in the WSIP setting (compared to the base setting) occurs in about 25 percent of the years, during one or more of the months of July through September. There are a few exceptions of years when the effect occurs in months prior to July. The effect typically manifests as one additional month of flow reduction in a year, amounting to about 150 to 190 acre-feet. The worst event was a reduction in two months of a year (1947), amounting to about 300 acre-feet.

The July through September flow reduction effect could be ameliorated by allowing water to be extracted from the reservoir below the spillway invert to meet the Coastside CWD delivery request during the summer. The model allows Pilarcitos Reservoir to operate at a lower minimum storage for the months of July through September. Figure 2.8-1 illustrates a chronological trace of the simulation of Pilarcitos Reservoir storage and stream releases from Pilarcitos Dam. Shown in Figure 2.8-1 are the results for the WSIP, alternative, and base settings. The alternative setting includes an allowance to draw up to 300 acre-feet from Pilarcitos Reservoir below the spillway invert to maintain July through September flows in Pilarcitos Creek.

The effect of the assumed Coastside CWD operation in combination with the effects of the overall SFPUC regional system operations would be occasional differences in the storage operation of Pilarcitos Reservoir. Overall, there would be a slightly lower average storage at Pilarcitos Reservoir. Figure 2.8-2 illustrates the average monthly storage in Pilarcitos Reservoir for the 82 -year simulation, and the range in storage for each month for the WSIP and base settings.

Figure 2.8-1 illustrates the result of allowing the reservoir to go below the spillway invert during July through September in the alternative setting. The 300-acre-foot value is representative of the largest effect of the WSIP in a year (1947) for the July through September period. The hydrograph illustrates that the measure is not needed every year, and the full 300 acre-feet of the measure is rarely used. In effect, the measure assures controlled flow during the July through September period, even if the base did not have controlled flow. Several factors contribute to other changes in Pilarcitos Reservoir storage. At times, additional water is drawn from Pilarcitos Reservoir to the San Mateo Creek watershed in reaction to additional demands being served from the SFPUC system. Pilarcitos Reservoir is at times also drawn to meet the increase in demand from Coastside CWD during months (e.g., spring months) when available conveyance capacity from Stone Dam exists. Both of these additional draws from the reservoir would deplete storage below that experienced in the base setting. Pilarcitos storage would typically replenish at the expense of future reservoir spills, or within a year storage would end the same and the reservoir would still reach the minimum level at the spillway invert.

Figure 2.8-1
Pilarcitos Reservoir Storage and Stream Release

APPENDIX O2

Figure 2.8-2

Stream releases from Pilarcitos Dam are also shown in Figure 2.8-1. Releases can occur for diversions at Stone Dam for Coastside CWD deliveries, conveyance to the San Mateo Creek watershed (e.g., Crystal Springs Reservoir), and reservoir spills. Pilarcitos Creek typically gains flow from unregulated tributary streams and runoff below Pilarcitos Dam. The differences in flow between the alternative and WSIP settings are shown chronologically in Table 2.8-1. The differences in flow between the alternative and base settings are shown chronologically in Table 2.8-2. The results shown in these two tables illustrate that the alternative's flow measure would ameliorate all summer (July through September) flow reductions associated with the WSIP, and at times would provide flow in excess of the flow occurring in the base setting.

Table 2.8-3 summarizes monthly average flow within year types for the comparison of the alternative and WSIP settings. Table 2.8-4 provides the same information for the alternative and base settings. When compared to the base setting, the alternative setting would result in positive changes in flows during the winter and spring, which are indicative of the additional draw of water from the reservoir to serve the increased demand of Coastside CWD during the period when conveyance capacity to Coastside CWD exists from Stone Dam. In this same comparison, the few reductions in flow during the early summer are indicative of years when additional releases earlier in a year would lead to the reservoir being depleted to minimum storage earlier in the year, thus reducing the amount of water released in a later month. During the summer, the increased releases are indicative of the alternative's flow measure. Reductions in flow during the winter and spring are indicative of the reservoir replenishing additionally depleted storage associated with the alternative setting.

The effect of the WSIP on Pilarcitos Creek flows below Stone Dam differs from the effect on flows below Pilarcitos Dam. Figure 2.8-3 illustrates the chronological trace of inflow to Stone Dam, which includes releases from Pilarcitos Dam to Pilarcitos Creek and unregulated flow to the stream below Pilarcitos Dam, and releases (spills) from Stone Dam to Pilarcitos Creek. Shown in the figure are the results for the alternative, WSIP, and base settings. The flow past Stone Dam in all the settings is typically minor (zero in modeling results, but may be measurable in terms of leakage and seepage past the dam), as inflow to the dam is diverted to Coastside CWD or to the San Mateo watershed. Releases past Stone Dam typically occur when unregulated flow below Pilarcitos Dam exceeds the delivery needs of Coastside CWD at a time when the storage level at Crystal Springs Reservoir rejects the water from the Pilarcitos watershed. During times when inflow to Stone Dam is reduced due to reduced spills from Pilarcitos Reservoir, there are still substantial spills from Stone Dam to Pilarcitos Creek from the unregulated flow below Pilarcitos Dam.

In comparison to the base setting, the changes in flow below Stone Dam in the alternative setting would typically occur during the rainy season between the months of January and March, in at least one month during about half of the years. Tables 2.8-5 and 2.8-6 summarize the results of the alternative, WSIP, and base settings in terms of average monthly flows by year type, and the average differences in flow among the settings

Table 2.8-1
Difference in Total Stream Release from Pilarcitos Reservoir (Acre-feet)

Table 2.8-2
Difference in Total Stream Release from Pilarcitos Reservoir (Acre-feet)

APPENDIX O2

Table 2.8-3

Table 2.8-4

APPENDIX O2

Figure 2.8-3
Stone Dam Stream Release and Inflow

APPENDIX O2

Table 2.8-5

(Average within Year Type - Grouped by 5 Local Reservoir Runoff)										Modified WSIP			
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	312	1,514	3,162	2,011	475	0	0	0	0	0	7,474
Above Normal	0	0	42	205	985	278	0	0	0	0	0	0	1,509
Normal	0	0	45	33	100	0	0	0	0	0	0	0	179
Below Normal	0	0	0	0	0	0	0	0	0	0	0	0	0
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	78	344	841	450	93	0	0	0	0	0	1,806
Total Stream Release from Stone Dam (Acre-feet)													
(Average within	- G	by 5	servo									WSIP	
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	324	1,493	3,176	2,188	103	0	0	0	0	0	7,282
Above Normal	0	0	42	108	734	120	0	0	0	0	0	0	1,003
Normal	0	0	45	27	135	0	0	0	0	0	0	0	208
Below Normal	0	0	0	0	0	0	0	0	0	0	0	0	0
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	81	319	798	452	20	0	0	0	0	0	1,669
Difference in Total Stream Release from Stone Dam (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff) Modified WSIP minus WSIP													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	-11	21	-14	-176	373	0	0	0	0	0	193
Above Normal	0	0	0	97	250	158	0	0	0	0	0	0	505
Normal	0	0	0	6	-35	0	0	0	0	0	0	0	-29
Below Normal	0	0	0	0	0	0	0	0	0	0	0	0	0
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	-2	25	42	-2	73	0	0	0	0	0	137

Table 2.8-6

APPENDIX O3

Memorandum

Subject:	HH/LSM Assumptions and Results - WSIP Variants
	2018 WSIP

From: Daniel B. Steiner
Date: May 6, 2008

1. Introduction

This memorandum summarizes assumptions for and describes the interpretation of HH/LSM results for the simulation of the WSIP variant referenced as the "2018 WSIP." The PEIR analyzed three WSIP variants described as: WSIP Variant 1 - All Tuolumne; WSIP Variant 2 - Regional Desalination for Drought; and WSIP Variant 3-10\% Rationing. The major difference between the variants and the proposed program (WSIP) was either in the proposed source(s) of water supply or in the drought-year rationing level of service (LOS). The 2018 WSIP variant supplements the previously described analyses. Tables 1-1 and 1-2 summarize the components, various modeling assumptions, and performance and hydrologic results for the 2018 WSIP variant in comparison to the modeled existing (2005) base setting (with Calaveras Reservoir constrained by DSOD restrictions) and the WSIP setting.

The hydrology that would result under this variant is primarily discussed in terms of a comparison to the WSIP and contrasted to the baseline condition of the PEIR, namely the simulated current (2005) operation of the SFPUC regional water system assuming that the Calaveras and Crystal Springs Reservoirs operation are constrained by DSOD restrictions. Only primary hydrologic parameters such as projected water deliveries, reservoir storage, and stream flows are compared, and only those parameters that have been identified as key hydrologic factors that lead to environmental impacts are illustrated.

APPENDIX O3

Table 1-1
Setting Characteristics and Modeling Assumptions (Part 1/3)

APPENDIX O3

Table 1-1
Setting Characteristics and Modeling Assumptions (Part 2/3)

APPENDIX O3

Table 1-1
Setting Characteristics and Modeling Assumptions (Part 3/3)

Assumptions and Characteristics of Setting and/or Program	Units	Baseline	Proposed WSIP	WSIP Variants ${ }^{3}$
		Baseline Conditions ${ }^{1}$ - Calaveras Constrained		2018 WSIP
Tuolumne River System Operational Parameters				
Hetch Hetchy Reservoir Operation				
Storage - Minimum/Maximum Fall/Winter Operation Storage	TAF	26.1-360.4 30 TAF winter buffer	26.1-360.4 30 TAF winter buffer	Same as WSIP
1987 Stipulation Minimum Release Flows		Yes	Yes	Same as WSIP
1987 Stipulation Supplemental Release Flows		No	No	Same as WSIP
Cherry Reservoir Operation				
Storage - Minimum/Maximum Fall/Winter Operation Storage	TAF	$1.0-273.3$ 25.3 TAF winter buffer	$1.0-273.3$ 25.3 TAF winter buffer	Same as WSIP
Eleanor Reservoir Operation				
Storage - Minimum/Maximum Fall/Winter Operation Storage	TAF	$0.0-27.1$ Required Minimum Storage	$\begin{gathered} \hline 0.0-27.1 \\ \text { Reqrd Minimum Stor } \\ \hline \end{gathered}$	Same as WSIP
New Don Pedro Water Bank Account				
Storage - Minimum/Maximum	TAF	$0.0-570.0$ Temporary storage up to 740 TAF during Apr - Sep	$0.0-570.0$ Temp stor up to 740 TAF during Apr - Sep	$\begin{aligned} & \text { Same } \\ & \text { as } \\ & \text { WSIP } \end{aligned}$
Conveyance				
San Joaquin Pipelines Maximum	MGD	290	313	Same as WSIP
San Joaquin Pipelines Minimum	MGD	70	70	Same as WSIP
San Joaquin Pipelines Flow Rate Changes		11 Stepwise	17 Stepwise	Same as WSIP
		Surrogate minimum changes by allowing only 7 changes in a year	Allow up to 7 changes in a year (surrogate)	Same as WSIP
San Joaquin Pipelines Maintenance		Cycle one pipeline out Nov - Mar each year (average remaining capacity rotation) maximum 210 MGD	Cyclic 5-year mantenance (see note)	$\begin{aligned} & \text { Same } \\ & \text { as } \\ & \text { WSIP } \end{aligned}$
TID/MID Operational Parameters			Cyclic 5-year maintenance, maximum 271 MGD available all other months ex and 135.5 MGD available	le Apr - Oct all years lable Year 5 Nov - Dec r 3 Dec
Districts' Tuolumne Diversion ${ }^{17}$		Varies annually based on land use and water availability Annual average 875 TAF	Set equal to baseline conditions. SFPUC effects measured by the result of reducing inflow to DP and its effect upon La Grange releases to the $T R$	$\begin{gathered} \text { Same } \\ \text { as } \\ \text { WSIP } \\ \hline \end{gathered}$
Tuolumne River La Grange Flow Releases Don Pedro, 1996 FERC VAMP - considered but not modeled ${ }^{18}$		$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$

APPENDIX 03

Table 1-2
Summary of Modeling Results (Part 1/2)

HH/LSM Simulation Results	Units	Baseline	Proposed WSIP	WSIP Variants ${ }^{3}$		
		Baseline Conditions ${ }^{1}$ - Calaveras Constrained		2018 WSIP		
Design Drought Production \& Disposition ${ }^{19}$						
San Joaquin Pipeline Diversion	mgd	208.7	235.0	212.2		
Bay-Area Deliveries	MGD	218.3	248.9	226.8		
Added Groveland \& Coastside Delivery	mgd	2.6	3.6	2.6		
Local Reservoir Evaporation	MGD	10.7	12.5	12.7		
Inflow from ACDD	MGD	1.3	1.6	1.6		
Flow Recapture	mgd	0	5.3	5.2		
Local Reservoir Stream Release	MGD	0.6	5.4	5.5		
Desalination	MGD	0	0	0		
Westside Basin	MGD	0	5.6	6.4		
District Transfer to NDP Water Bank	MGD	0	24.7	1.9		
Local Storage - Begin	Mg	53,854	77,310	77,310		
Local Storage - End	MG	18,403	18,495	18,797		
Study Average Production \& Disposition (1921-02) ${ }^{20}$						
Tuolumne River System						
Reservoirs						
Hetch Hetchy						
Inflow	AF	749,605	749,605	749,605		
River	AF	275,255	267,021	276,837		
Stream Minimum Release	AF	65,728	65,593	65,828		
Tunnel	AF	470,709	478,932	469,171		
Evaporation	AF	3,893	3,869	3,875		
Reservoir	AF	281,938	275,235	285,919		
Cherry						
${ }^{\text {Inflow }}$	AF	279,293	279,293	279,293		
Eleanor Gravity	AF	289	289	289		
Eleanor Pump	AF	118,251	118,274	118,337		
River	AF	41,636	41,439	41,360		
Stream Minimum Release	AF					
Tunnel	AF	352,692	352,915	353,059		
Evaporation	AF	3,505	3,501	${ }^{3,500}$		
Reservoir	AF	239,971	239,309	239,015		
Eleanor						
Inflow	${ }^{\text {AF }}$	169,617	169,617	169,617		
Eleanor Gravity	AF	289	289	289		
Eleanor Pump	AF	118,251	118,274	118,337		
River	${ }_{\text {AF }}$	49,171	49,148	49,085		
Stream Minimum Release	AF					
Evaporation	AF	1,906	1,906	1,906		
Reservoir	AF	22,191	22,191	22,191		
Don Pedro Reservoir						
${ }^{\text {Inflow }}$	${ }^{\text {AF }}$	1,587,517	${ }_{1}^{1,560,828}$	1,585,611		
MID Diversion	AF	302,054	302,055	302,055		
TID Diversion	AF	573,164	573,168	573,168		
LaGrange Total Stream	AF	668,876	644,009	667,363		
LaGrange Minimum Stream Release	AF	221,477	221,477	221,477		
Total Evaporation	AF	43,493	42,604	43,366		
Reservoir	AF	1,472,337	1,434,872	1,466,669		
Water Bank Account						
Balance Transfer	AF	514,299	516,733	513,882		
San Joaquin Pipelines						
Volume (AF)	AF	247,763	274,450	249,723		
Volume (MG)	mg	80,734	89,429	81,372		
Rate (MGD)	MGD	221	245	223		
Max Rate (MGD)	MGD	290	313	313		
Min Rate (MGD)	MGD	70	0	0		
East Bay System						
Reservoirs						
Inflow	MG	12,368	12,368	12,368		
From ACDD	MG	1,316	1,730	1,715		
Stream Stream Flow Recapture	MG	3,660	4,167	4,224		
Stream Flow Recapture	MG	0	1,538	1,539		
${ }_{\text {To SVWTP }}$	MG	9,013	8,244	8,163		
To San Antonio	MG	0	0	0		
Evaporation	mg	1,023	1,704	1,712		
San Antonio						
${ }_{\text {l }}^{\text {Inflow }}$ From Calaveras/SJPL	MG	2,468	2,468	2,468		
$\underbrace{\text { Stream }}_{\text {From Calaveras/SJPL }}$	MG	1,173	1,734	1,326		
Stream To SvWTP	MG	991	${ }^{613}$	962		
${ }_{\text {To }} \begin{aligned} & \text { To SVWTP } \\ & \text { Evaporation }\end{aligned}$	MG	1,693 1,012 1023	2,628 973	1,813 1,026		
Inflow	mg	4,197	4,197	4,197		
To Calaveras Reservoir	MG	1,316	1,730	1,715		
Alameda Creek Confluence						
Accretion From ACDD	MG	${ }_{2685}^{628}$	625 2,467	625 2.482		
From Calaveras Dam	MG	3,660	4,167	4,224		
At Confluence	mg	7,167	7,259	7,331		
Treatment Plants						
SVWTP Total	MG	13,662	15,738	15,720		
From Calaveras	MG	9,013	8,244	8,163		
From San Antonio	MG	1,693	2.628	1,813		
From SJPL	mg	2,956	3,329	4,205		
From Recapture	MG	0	1,538	1,539		
SWWTP Total MGD	MGD	37	43	43		
SVWTP Max MGD	MGD	120	158	158		
SVWTP Min MGD	MGD	20	20	20		

APPENDIX 03

Table 1-2
Summary of Modeling Results (Part 2/2)

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{HH/LSM Simulation Results} \& \multirow[b]{2}{*}{Units} \& Baseline \& \multirow[b]{2}{*}{Proposed WSIP} \& \multirow[t]{2}{*}{WSIP Variants ${ }^{3}$

2018 WSIP}

\hline \& \& Baseline Conditions ${ }^{1}$ - Calaveras Constrained \& \&

\hline \multicolumn{5}{|l|}{Peninsula System}

\hline \multicolumn{5}{|l|}{Reservoirs}

\hline \multicolumn{5}{|l|}{Crystal Springs}

\hline Inflow \& MG \& 3,722 \& 3,722 \& 3,722

\hline From San Andreas \& MG \& 0 \& 0 \& 0

\hline From Pilarcitos and SJPL \& MG \& 8,045 \& 7,643 \& 8,093

\hline Stream \& MG \& 773 \& 325 \& 569

\hline Pump to San Andreas \& Mg \& 9,438 \& 9,005 \& 9,426

\hline Pump to Coastside \& MG \& 247 \& 591 \& 255

\hline Evaporation \& MG \& 1,323 \& 1,490 \& 1,565

\hline Reservoir \& MG \& 16,360 \& 18,621 \& 19,663

\hline \multicolumn{5}{|l|}{San Andreas}

\hline Inflow \& MG \& 1,428 \& 1,428 \& 1,428

\hline From other Streams \& MG \& 9,954 \& 9,590 \& 9,990

\hline Stream \& MG \& 0 \& 0 \& 0

\hline To HTWTP \& MG \& 10,851 \& 10,487 \& 10,887

\hline Evaporation \& Mg \& 530 \& 531 \& 531

\hline Reservoir \& MG \& 5,892 \& 5,882 \& 5,893

\hline \multicolumn{5}{|l|}{Pilarcitos}

\hline Inflow \& \& 1,297 \& 1,297 \& 1,297

\hline To San Andreas \& MG \& 516 \& 584 \& 564

\hline For Stone Diversion \& MG \& 262 \& 280 \& 262

\hline Stream other than Diversion \& MG \& 417 \& 332 \& 369

\hline Evaporation \& Mg \& 103 \& 102 \& 103

\hline Reservoir \& MG \& 776 \& 767 \& 775

\hline \multicolumn{5}{|l|}{Stone Dam}

\hline Accretion blw Pilarcitos \& MG \& 167 \& 211 \& 168

\hline Pilarcitos non-diversion Release \& MG \& 417 \& 332 \& 369

\hline Pilarcitos Release for Diversions \& MG \& 584 \& 543 \& 537

\hline Diversion to Coastside \& MG \& 167 \& 211 \& 168

\hline Diversion to Crystal Springs \& MG \& 142 \& 180 \& 156

\hline Spill past Stone \& MG \& 860 \& 695 \& 751

\hline \multicolumn{5}{|l|}{Treatment Plants}

\hline HTWTP Total \& MG \& 10,851 \& 10,487 \& 10,887

\hline HTWTP Total MGD \& MGD \& 30 \& 29 \& 30

\hline HTWTP Max MGD \& MGD \& 149 \& 106 \& 107

\hline HTWTP Min MGD \& MGD \& 20 \& 20 \& 20

\hline \multicolumn{5}{|l|}{Other Facilites}

\hline Westside Basin Net \& MG \& 0 \& 11 \& 11

\hline Desalination Input \& MG \& 0 \& 0 \& 0

\hline \multicolumn{5}{|l|}{Additional Information}

\hline Total Local Reservoir Stream Release \& MG \& 5,842 \& 5,437 \& 6,124

\hline Total Local Reservoir Stream Evaporation \& MG \& 3,991 \& 4,800 \& 4,936

\hline \multicolumn{5}{|l|}{Deliveries}

\hline In-City \& MG \& 29,589 \& 26,686 \& 27,487

\hline South Bay \& Mg \& 43,106 \& 52,906 \& 45,267

\hline Crystal Springs \& MG \& 15,120 \& 16,931 \& 15,895

\hline San Andreas \& MG \& 5,400 \& 6,604 \& 5,861

\hline Coastside \& Mg \& 675 \& 1,082 \& 1,082

\hline Groveland \& MG \& 365 \& 365 \& 365

\hline Total Deliveries \& MG \& 94,255 \& 104,574 \& 95,957

\hline Total Deliveries \& MGD \& 258 \& 287 \& 263

\hline \multicolumn{5}{|l|}{Storage}

\hline Total Local Storage Begin \& MG \& 49,849 \& 71,363 \& 71,873

\hline Total Local Storage End \& MG \& 43,129 \& 65,197 \& 69,957

\hline Residual Difference during 82-year Simulation \& MGD \& 0.22 \& 0.21 \& 0.06

\hline Westside Storage Begin \& MG \& 0 \& 23,474 \& 23,474

\hline Westside Storage End \& MG \& 0 \& 24,363 \& 24,363

\hline Residual Difference during 82-year Simulation \& MGD \& 0.00 \& -0.03 \& -0.03

\hline
\end{tabular}

APPENDIX O3

Notes for Table 1-1 and Table 1-2

1. Baseline condition represents the existing conditions at the time of NOP publication in September 2005. This is the baseline used to assess WSIP program impacts and impact significance. This setting is indicative of DSOD restrictions on Calaveras and Crystal Springs Reservoirs.
2. N / A
3. These scenarios represent CEQA alternatives that vary from the WSIP on key components in a manner expected to avoid or reduce potentially significant effects of the proposed program.
4. The time horizon for the setting of the scenario. The baseline condition scenario is depicted for recent conditions, while the proposed WSIP, variants, and alternatives are depicted for the future at full buildout and implementation (i.e., conditions in the year 2030). The 2018 WSIP variant assesses conditions at the time that full current contract buildout occurs.
5. HH/LSM simulation study name.
6. The customer purchase request (demand) information is based on the demand and request studies prepared by the SFPUC in coordination with the wholesale customers. This demand on the regional water system includes both the SFPUC retail customers and wholesale customers. The current (2005) average annual demand is 265 mgd and the projected 2030 average annual demand is 300 mgd, assuming the SFPUC adopts the updated wholesale customer purchase requests as part of renewing the Master Sales Agreement with these customers (due in 2009).
7. Certain scenarios include development of additional water supply from a combination of recycled water projects, groundwater projects, and conservation, utilized every year and not subject to reduction during drought.
8. The average annual demand for supplies from the combination of SFPUC local watershed, Tuolumne River, and programs not included in the regional water conservation, recycling, and groundwater programs shown.
9. Modeled results for SFPUC deliveries, with supplies added for regional water conservation, recycling, and groundwater programs. Total deliveries and supply will be less than full customer purchase requests due to rationing in some years.
10. Shows only the features that affect hydrologic results of the system operation simulations. Additional projects are included in the WSIP, variants and alternatives.
11. Illustrates the frequency and severity of water supply action or the severity of systemwide rationing. Only years when variable water supply component is implemented or rationing occurs are shown. "DD" illustrates the shortage results for years included in the prospective drought period of the SFPUC design drought. These years contribute to establishing system operation protocols but are not included in the hydrologic assessment analyses.
12. Rationing policy cap: The SFPUC WSIP level of service goal is to maintain rationing on the regional system at no more than 20% during any one year of the drought. Some alternatives do not achieve this level of service goal. Performance is indicated for the Design Drought ("DD") sequence and for the "Historical" hydrologic sequence.
13. Water supply elements develop water in different amounts from year-to-year, and in some instances only develop water during dry years. This information is provided to illustrate a comparison between local watershed supplies, Tuolumne River supplies and other identifiable water supplies used to meet system purchase requests. Values are stated in units of average annual quantities during the simulated historical sequence.
14. Results from HH/LSM analysis of each scenario. Values represent the average annual production of each element of supply during the design drought period.
15. Simplified calculation of system deliveries during the SFPUC design drought. The value represents the application of system-wide shortages to the demand level being met with SFPUC local watershed, Tuolumne River, and other developed supplies and does not include supplies from regional water conservation, recycled water or groundwater projects. Average value may be slightly misstated (up to 3 mgd) due to metric of analysis that does not account for differences in residual storage between studies. "Nominal" Firm Yield represents the yield of each scenario after adjustment for minor residual storage differences.
16. Supplemental releases from Calaveras Reservoir for fisheries (1997 CDFG MOU) of up to 6,300 acre-feet per year and the Alameda Creek recapture facility project are tied to implementation of the Calaveras Dam Replacement project (SV-2). When the dam is replaced and capacity restored, the flow release and recapture will both occur. The release requirement is based on supplementing other occurring flows below Calaveras Reservoir, sometimes not requiring the full 6,300 acre-feet.
17. SFPUC actions are assumed to not change TID/MID diversions so as to isolate and possibly overstate the WSIP's effects on the Tuolumne River below La Grange Dam. The Districts' diversions are assumed to be constant among the scenarios to provide comparable results of the WSIP-alone effects. The exception is for the Modified WSIP Alternative, in which the TID/MID diversion is reduced by the amount of SFPUC transfer.
18. Participation in the San Joaquin River Agreement is assumed. Although the agreement expires after 2010, it is assumed that a subsequent similar agreement or requirement of the Districts will occur. The HH/LSM does not explicitly model the Districts' participation in the agreement; however, their participation if modeled would result in only minor differences in results and would not change impact conclusions.
19. From $\mathrm{HH} / \mathrm{LSM}$ results for modeling the SFPUC design drought period.
20. From $\mathrm{HH} / \mathrm{LSM}$ results for modeling the system operations for the historical hydrologic period 1921-2002. Values indicate average annual quantities during simulated historical period.

APPENDIX O3

2. WSIP Variant - 2018 WSIP

The 2018 WSIP variant would in effect be a combination of the proposed WSIP and the water purchase request of the CEQA No Purchase Request Increase Alternative applicable for the period through the year 2018. This variant would limit the SFPUC wholesale customers' interim future purchases to the terms of the existing Master Water Sales Agreement through 2018. Under that agreement, the wholesale customers may purchase up to 184 mgd on an average annual basis, subject to reductions in the event of a drought, water shortage, earthquake, other natural disaster, or rehabilitation and maintenance of the system. Under the variant, the customer purchase requests through 2018 would not exceed 184 mgd for the wholesale customers. It is assumed that the total customer purchase requests to be served by the regional system through 2018 would be 275 mgd , consisting of 184 mgd for the wholesale customers and 91 mgd for the retail customers. The increased water demand would be offset with 10 mgd from recycled water, groundwater, and conservation projects in San Francisco. Although the net demand through 2018 on the regional water system would be the same as the current demand (265 mgd), the improvement in delivery reliability requires development of additional system yield. The additional deliveries would be served through additional Tuolumne River diversions and increased use of local watershed supplies from restoration of Calaveras Reservoir and Crystal Springs Reservoir. Supplemental supplies would include implementation of the Westside Basin Groundwater Program and a water transfer with TID/MID.

In the context of the WSIP planning horizon for the year 2030, this analysis provides insight into the hydrologic effects of the program at an interim point in time (2018), or it provides a depiction of the WSIP if a delivery limitation is continued through 2030. Should the deliveries of the regional system be allowed to increase after 2018, the analysis described for the WSIP depicts the hydrologic effects associated with increased deliveries. The following description focuses on the time at which the variant's net demand of 265 mgd would occur.

2.1 Water Deliveries and Drought Response Actions

Compared to the WSIP setting for 2030, the regional system's resources are required to serve a net 265 mgd demand (275 mgd purchase request less 10 mgd of recycled water, groundwater, and conservation projects) instead of a net 290 mgd demand. As part of the formulation of this variant, the water transfer from TID/MID was sized to provide the same frequency and severity of water shortages (percentage-wise) for the variant as that occurring in the WSIP setting during the design drought, although systemwide water deliveries would be a net 265 mgd in the variant setting as compared to the WSIP setting delivery of a net 290 mgd . This objective required the water transfer to be sized at 2,300 acre-feet per year. With a water supply formulated about comparable to that provided for the WSIP setting (only proportionately smaller for a lesser demand), the implementation of rationing and the severity of rationing from the SFPUC system during drought periods would be the same. Table 1-1 compares the drought response actions for the proposed program and the variant. Figure 2.1-1 illustrates the occurrence of drought response actions for the simulated 82-year historical period (1921-2002).

Figure 2.1-1
Drought Response Actions - WSIP and 2018 WSIP

APPENDIX O3

In Figure 2.1-1, years with bars showing a "1" or greater level of action indicate periods when a supplemental water supply action is initiated. In both settings, the water supply action is the use of the Westside Groundwater Basin Program to supplement SFPUC water deliveries. Also occurring in both settings is the water transfer supplemental supply from TID/MID every year. Action levels greater than "1" indicate the imposition of delivery shortages (rationing) to SFPUC customers. SFPUC customers would experience the same frequency and severity of shortages (percentage-wise). The triggering of the Westside Basin Groundwater Program supplemental supply would occur more frequently in the WSIP setting, typically as a precautionary response to potential prolonged drought or to retain local area storage. With the lesser demand of the variant, a less frequent precautionary response would be needed.

The same form of information is shown in Figure 2.1-2 for the comparison between the variant and the base (existing) settings. There is not a level 1 action in the base setting. Without supplemental resources, the existing system only has delivery shortage measures available to cope with drought. In the base setting, the shortage measure is imposed during level 2 (10 percent) and level 3 (20 percent). These percentages of shortage are applied to both the variant and the base settings for these action levels, and they are applied to the same level of net water demand (265 mgd). During this simulation period, rationing would not need to exceed 20 percent in either setting; however, in the variant setting the occurrence of additional water supplies lessens the frequency and severity of water delivery shortages.

Figure 2.1-2
Drought Response Actions - Base and 2018 WSIP

Not illustrated in Figure 2.1-2 but shown in Table 1-1 are the delivery shortages anticipated during the entire SFPUC design drought. During the design drought, the base setting does not have a viable operation without exceeding a 20 percent shortage level. The base setting exceeds the 20 percent shortage level (requires 25 percent rationing) during the last 18 months of the design drought. The variant would viably provide deliveries without exceeding a 20 percent shortage level.

The difference in water deliveries between the proposed program and the variant is shown chronologically for the 82-year simulation in Table 2.1-1. There would be less water delivered to the region by the SFPUC in all years, a result of serving a lesser purchase request (275 mgd instead of 300 mgd , and a lesser net demand of 265 mgd instead of 290 mgd).

Comparing the variant setting to the base setting, Table 2.1-2 illustrates the difference in water deliveries between the two settings. The increases in deliveries under the variant setting occur due to an improvement in water delivery reliability, which reduces the severity of water shortages. The shifting in the pattern of deliveries (most evident during years when there is no increase in total annual delivery) is indicative of the anticipated seasonal effect of recycled water, groundwater, and conservation projects within the pattern of the projected future, albeit limited, purchase request. The 82-year average increase in deliveries amounts to approximately 3.5 mgd .

Table 2.1-1
Difference in Total System-wide Delivery (MG)

APPENDIX O3

Table 2.1-2
Difference in Total System-wide Delivery (MG) 2018 WSIP minus Base

APPENDIX O3

2.2 Diversions from the Tuolumne River

The metric for illustrating the SFPUC diversions from the Tuolumne River Basin (Tuolumne) is the flow through the San Joaquin Pipeline (SJPL). Inherent in the variant is a net water demand that is essentially equal to that under the base setting, which is less than the demand served by the proposed program. Table 2.2-1 illustrates the difference in diversions to the SJPL between the proposed program and the variant settings. In both settings, the conveyance capacity of the SJPL is increased compared to the base setting. During the summer, the SJPL would essentially operate at the same maximum rate in both the variant and WSIP settings to minimize drawdown of Bay Area reservoir storage. A few exceptions occur during the summer of drought periods when the variant would serve a lesser demand than the WSIP. Overall, compared to the WSIP setting, the variant setting would divert less water from the Tuolumne.

Table 2.2-2 illustrates the difference in diversions to the SJPL between the variant and base settings. Evident in the operation is the increase in summer diversions associated with an increase in the conveyance capacity of the SJPL. As described above, with the increase in SJPL conveyance capacity, summer diversions would increase to retain storage in the Bay Area reservoirs. With the demand of the variant being approximately the same as the base setting, the increase in summer diversions to the SJPL would result in reduced diversions during the late summer and fall. The differences in December diversions are largely the result of maintenance in the variant setting (lessening available conveyance capacity) that would not occur in the base setting. The increased diversions during the winter and spring result from the need to replenish Bay Area reservoir storage after the maintenance, and then the operation of topping off Bay Area reservoir storage prior to summer. There would be an overall increase in average annual diversions to the SJPL in the variant setting associated with the improvement in water delivery reliability. The 82-year average annual increase in diversions from the Tuolumne amounts to approximately 1,900 acre-feet per year (1.7 mgd).

Table 2.2-3 illustrates the average monthly diversions through the SJPL by year type for the 82-year simulation for the proposed program and the variant settings and the difference between the two settings. Table 2.3-4 shows the same information for the variant and base settings.

Table 2.2-1
Difference in Total San Joaquin Pipeline (Acre-feet)

Table 2.2-2
Difference in Total San Joaquin Pipeline (Acre-feet)

Difference in	San	quin Pip	e (A	et)							8 WSIP	s Base		
Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul\|	Aug	Sep	WY Total	FY Total
1921	-3,806	-2,762	0	0	0	8,562	2,118	2,189	2,118	2,189	2,189	-2,762	10,035	10,035
1922	-8,562	-4,603	-4,947	0	0	0	4,603	2,854	2,762	2,189	2,189	-2,762	-6,277	-6,277
1923	-7,611	-4,603	0	0	0	11,416	921	952	921	2,189	2,189	-4,603	1,771	3,612
1924	-8,562	-2,762	-952	-2,855	-2,578	5,803	2,118	2,189	2,118	2,189	2,189	0	-1,103	-5,706
1925	-4,756	-19,334	-19,979	5,803	14,608	11,512	2,118	2,189	2,118	2,189	2,189	2,118	775	-1,343
1926	0	2,762	-7,088	0	0	15,317	2,762	2,189	2,118	2,189	2,189	-4,603	17,835	24,556
1927	-5,708	-4,604	-952	3,805	0	4,757	1,841	952	921	2,189	2,189	-4,603	787	787
1928	-3,806	-4,603	-2,854	1,902	2,578	2,663	1,841	952	921	2,189	2,189	-4,603	-631	-631
1929	-3,806	-2,762	-952	0	0	5,803	2,118	2,189	2,118	2,189	2,189	0	9,086	4,483
1930	-4,756	-19,334	-19,979	5,803	9,538	11,512	2,118	2,189	2,118	2,189	2,189	921	-5,492	-6,413
1931	-2,854	-921	-7,088	-952	-859	5,803	2,118	2,189	2,118	2,189	-475	-2,762	-1,494	4,853
1932	0	-921	951	3,805	0	12,558	4,880	2,949	2,854	2,189	2,189	-2,762	28,692	26,028
1933	-4,756	-2,762	-7,611	4,757	4,297	5,803	2,118	2,189	2,118	2,189	2,189	2,118	12,649	7,769
1934	-2,854	1,841	-2,855	-952	-860	5,803	2,118	2,189	2,118	2,189	2,189	-1,749	9,177	13,044
1935	-2,854	-19,334	-19,979	18,075	14,608	10,560	6,445	3,901	3,775	2,189	2,189	-920	18,655	17,826
1936	-8,562	-2,762	-7,088	3,805	0	9,514	2,118	952	921	2,189	2,189	-2,762	514	2,356
1937	-7,611	-2,762	-952	0	0	0	2,762	2,379	2,302	2,189	2,189	-2,762	-2,266	-2,266
1938	-5,708	-4,603	-2,854	2,663	0	0	2,762	1,903	1,842	2,189	2,189	-2,762	-2,379	-2,379
1939	-7,611	-2,762	-4,757	952	860	5,803	2,118	2,189	2,118	2,189	2,189	921	4,209	526
1940	-4,756	-19,334	-19,979	15,317	0	5,708	5,524	2,379	2,302	2,189	2,189	-2,762	-11,223	-7,540
1941	-7,611	-2,762	-1,142	0	0	0	0	-1,902	-1,841	2,189	2,189	0	-10,880	-13,642
1942	-4,756	-2,762	-3,805	0	0	0	4,603	0	0	2,189	2,189	-920	-3,262	-2,342
1943	-4,756	-4,603	-7,611	0	0	0	5,524	-475	-460	2,189	2,189	-2,762	-10,765	-8,923
1944	-5,709	-2,762	-2,855	1,902	5,328	12,368	2,118	2,189	2,118	2,189	2,189	-4,603	14,472	16,313
1945	-8,562	-19,334	-19,979	5,803	5,156	15,317	2,118	2,189	2,118	2,189	2,189	-2,762	-13,558	-15,399
1946	-5,708	-4,603	0	0	0	7,611	2,118	2,189	2,118	2,189	2,189	-2,762	5,341	5,341
1947	-8,562	-5,524	-2,855	-4,757	0	10,560	2,118	2,189	2,118	2,189	2,189	0	-335	-3,097
1948	-2,854	0	-7,611	-952	-859	5,803	2,118	2,189	2,118	2,189	2,189	-2,762	1,568	4,330
1949	-5,708	0	-952	-4,757	-4,296	-2,854	2,118	952	921	2,189	2,189	-2,762	-12,960	-12,960
1950	-3,806	-19,334	-19,979	16,459	15,468	5,803	2,118	2,189	2,118	2,189	2,189	2,118	7,532	2,652
1951	-1,807	-4,604	0	0	0	0	2,118	952	921	2,189	2,189	-4,603	-2,645	4,076
1952	-3,806	-4,603	-951	0	0	0	6,444	-951	-920	2,189	2,189	-2,762	-3,171	-5,012
1953	-5,709	-2,762	0	0	0	9,514	2,118	2,189	2,118	2,189	2,189	-5,524	6,322	9,084
1954	-8,562	-4,603	-952	0	4,468	7,611	2,118	2,189	2,118	2,189	2,189	-5,524	3,241	3,241
1955	-8,562	-19,334	-15,222	16,459	12,202	5,803	2,118	2,189	2,118	2,189	2,189	2,118	4,267	-3,375
1956	-2,854	1,841	0	0	0	951	2,118	952	921	2,189	2,189	-5,524	2,783	10,425
1957	-3,806	-4,603	-952	0	5,328	10,560	2,118	2,189	2,118	2,189	2,189	-1,749	15,581	11,806
1958	-8,562	-2,762	-7,611	4,757	0	0	0	-1,902	-1,841	2,189	2,189	-1,749	-15,292	-15,292
1959	-5,708	-2,762	-952	952	0	14,270	2,118	2,189	2,118	2,189	2,189	-1,749	14,854	14,854
1960	-5,708	-19,334	-19,979	5,803	9,453	5,803	2,118	2,189	2,118	2,189	2,189	2,118	-11,041	-14,908
1961	-2,854	0	-7,088	-952	3,437	5,803	2,118	2,189	2,118	2,189	0	0	6,960	11,267
1962	-952	3,682	1,902	-952	859	16,173	7,642	2,854	2,762	2,189	2,189	-2,762	35,586	36,159
1963	-952	-2,762	-7,611	0	0	3,805	2,762	-952	-921	2,189	2,189	2,118	-135	-5,015
1964	-5,708	-4,603	-952	4,757	4,297	5,803	2,118	2,189	2,118	2,189	2,189	2,118	16,515	16,515
1965	-1,807	-19,334	-14,270	0	0	11,512	4,603	0	0	2,189	2,189	-4,603	-19,521	-12,800
1966	-3,806	-5,524	-1,902	4,947	4,468	5,803	2,118	2,189	2,118	2,189	2,189	-460	14,329	10,186
1967	-4,756	-2,762	-9,514	0	0	0	3,683	-2,855	-2,762	2,189	2,189	921	-13,667	-15,048
1968	-5,708	-2,762	-7,088	5,708	5,156	5,803	2,118	2,189	2,118	2,189	2,189	-460	11,452	12,833
1969	-7,610	-2,762	-4,757	0	0	0	5,524	0	0	2,189	2,189	-4,603	-9,830	-5,687
1970	-3,806	-19,334	-19,979	7,610	6,874	16,173	2,118	2,189	2,118	2,189	2,189	-2,762	-4,421	-6,262
1971	-5,708	-7,365	0	0	0	10,560	2,118	2,189	2,118	2,189	2,189	0	8,290	5,528
1972	-5,708	-2,762	-5,709	-4,757	0	5,803	2,118	2,189	2,118	2,189	2,189	921	-1,409	-2,330
1973	-2,854	-921	-7,611	0	0	0	4,603	952	921	2,189	2,189	-4,603	-5,135	389
1974	-5,709	-2,762	0	0	0	3,805	2,762	1,903	1,842	2,189	2,189	-4,603	1,616	1,616
1975	-5,708	-19,334	-19,979	11,512	859	2,663	7,365	1,903	1,842	2,189	2,189	-4,603	-19,102	-19,102
1976	-5,708	-4,603	-7,611	-952	-859	5,803	2,118	2,189	2,118	2,189	2,189	921	-2,206	-7,730
1977	-1,902	1,841	-2,855	-2,855	-2,578	5,803	2,118	2,189	2,118	2,189	1,047	4,603	11,718	9,178
1978	3,805	-921	-2,331	0	0	0	5,708	4,756	4,603	2,189	2,189	-2,762	17,236	23,459
1979	-8,562	-2,762	-952	952	0	8,562	2,118	2,189	2,118	2,189	2,189	-920	7,121	5,279
1980	-5,708	-19,334	-15,222	5,708	0	951	4,880	952	921	2,189	2,189	-4,603	-27,077	-23,394
1981	-3,806	-4,603	-7,611	5,708	5,156	11,512	2,118	2,189	2,118	2,189	2,189	-4,603	12,556	12,556
1982	-8,562	-5,524	-3,805	0	0	0	0	-952	-921	2,189	2,189	-920	-16,306	-19,989
1983	-4,756	-5,524	0	0	0	0	2,946	952	921	2,189	2,189	921	-162	-2,003
1984	-5,708	-7,365	0	0	0	5,803	2,118	2,189	2,118	2,189	2,189	-460	3,073	4,454
1985	-4,756	-19,334	-19,979	10,560	8,593	5,803	2,118	2,189	2,118	2,189	2,189	2,118	-6,192	-8,770
1986	-2,854	1,841	-7,088	-952	0	0	1,841	2,854	2,762	2,189	2,189	-4,603	-1,821	4,900
1987	-5,708	-2,762	-952	-4,757	-4,296	5,803	2,118	2,189	2,118	2,189	2,189	0	-1,869	-6,472
1988	-1,902	1,841	-7,088	2,854	2,578	5,803	2,118	2,189	2,118	2,189	-951	0	11,749	14,889
1989	0	-921	2,854	0	0	5,803	2,118	5,043	2,762	1,047	0	1,841	20,547	18,897
1990	1,902	-19,334	-15,222	10,560	8,593	5,803	2,118	2,189	2,118	0	-2,854	1,841	-2,286	1,615
1991	1,902	-4,603	-2,854	-952	-860	7,611	3,683	0	0	-475	1,902	-2,762	2,592	2,914
1992	-2,855	3,682	1,902	952	859	18,075	6,721	1,902	1,841	0	-4,756	0	28,323	31,744
1993	0	-2,762	-1,379	0	0	0	1,841	0	0	2,189	2,189	-1,749	329	-7,056
1994	-8,562	-2,762	-952	-2,855	8,593	5,803	2,118	2,189	2,118	2,189	2,189	-1,749	8,319	8,319
1995	-1,902	-19,334	-19,979	0	0	0	4,603	0	0	2,189	2,189	-2,762	-34,996	-33,983
1996	-3,806	-2,762	-2,854	0	0	0	4,880	2,854	2,762	2,189	2,189	-1,749	3,703	2,690
1997	-5,708	-4,604		0	0	7,611	2,118	2,189	2,118	2,189	2,189	0	8,102	6,353
1998	-7,610	-2,762	-7,611	0	0	0	4,604	952	921	2,189	2,189	0	-7,128	-7,128
1999	-3,806	-2,762	-2,855	4,757	0	4,757	6,444	-951	-920	2,189	2,189	-1,749	7,293	9,042
2000	-3,806	-19,334	-19,979	15,317	2,406	13,319	2,118	2,189	2,118	2,189	2,189	-1,749	-3,023	-3,023
2001	-5,708	-2,762	-7,611	3,805	6,875	11,416	2,118	2,189	2,118	2,189	2,189	-2,762	14,056	15,069
2002	-8,562	-2,762	-6,659	3,805	3,437	10,560	2,118	2,189	2,118	2,189	2,189	-460	10,162	7,860
Avg (21-02)	-4,638	-5,883	-6,178	2,233	1,938	5,955	2,897	1,635	1,556	2,089	1,901	-1,546	1,960	1,932

Table 2.2-3

Total San Joaquin Pipeline (Acre-feet)														
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total	FY Total
Wet	20,579	13,177	8,363	8,491	6,015	8,925	18,753	24,515	23,724	29,778	29,778	24,179	216,278	215,562
Above Normal	20,096	11,265	7,899	13,280	7,228	13,493	23,006	26,291	25,443	29,778	29,778	24,425	231,981	231,792
Normal	19,265	11,911	8,741	13,872	10,032	19,812	27,712	29,064	28,126	29,778	29,778	24,352	252,444	251,317
Below Normal	20,874	12,781	11,615	18,434	15,371	24,361	28,622	29,241	28,172	29,386	29,185	25,080	273,122	272,085
Dry	20,395	16,572	14,580	16,655	14,071	25,651	28,817	29,463	28,512	29,148	27,625	22,948	274,435	277,265
All Years	20,248	13,114	10,228	14,188	10,562	18,460	25,393	27,716	26,796	29,574	29,235	24,210	249,723	249,661
Total San Joaquin Pipeline (Acre-feet)														
(Average within Year Type - Grouped by Unimpaired Runoff at LaGrange) WSIP														
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total	FY Total
Wet	27,584	16,762	9,692	11,066	7,304	10,875	21,647	26,722	25,859	29,778	29,778	28,817	245,884	243,146
Above Normal	26,935	14,568	8,898	13,901	8,598	16,352	24,176	28,608	27,685	29,778	29,778	28,817	258,095	258,095
Normal	26,632	15,087	9,698	15,299	11,343	21,935	28,322	29,778	28,817	29,778	29,778	28,817	275,285	275,285
Below Normal	27,567	16,214	13,000	21,070	18,065	25,211	28,817	29,481	28,530	29,778	29,521	27,972	295,227	295,751
Dry	26,210	19,881	16,554	19,818	16,869	25,717	28,817	29,778	28,817	29,094	28,773	27,154	297,481	299,662
All Years	26,992	16,475	11,553	16,261	12,458	20,037	26,359	28,878	27,946	29,645	29,529	28,317	274,450	274,450
Difference in Total San Joaquin Pipeline (Acre-feet)														
(Average within Year Type - Grouped by Unimpaired Runoff at LaGrange) 2018 WSIP minus WSIP														
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total	FY Total
Wet	-7,005	-3,585	-1,329	-2,575	-1,289	-1,950	-2,894	-2,206	-2,135	0	0	-4,638	-29,605	-27,585
Above Normal	-6,839	-3,303	-999	-621	-1,370	-2,859	-1,170	-2,317	-2,242	0	0	-4,392	-26,113	-26,303
Normal	-7,367	-3,176	-957	-1,427	-1,311	-2,123	-610	-714	-691	0	0	-4,466	-22,841	-23,968
Below Normal	-6,693	-3,433	-1,385	-2,636	-2,694	-851	-195	-241	-357	-392	-336	-2,892	-22,105	-23,666
Dry	-5,816	-3,309	-1,974	-3,163	-2,798	-65	0	-315	-305	53	-1,148	-4,206	-23,046	-22,397
All Years	-6,745	-3,361	-1,326	-2,073	-1,896	-1,577	-967	-1,162	-1,150	-71	-294	-4,107	-24,727	-24,788

Table 2.3-4

Total San Joaquin Pipeline (Acre-feet)														
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total	FY Total
Wet	20,579	13,177	8,363	8,491	6,015	8,925	18,753	24,515	23,724	29,778	29,778	24,179	216,278	215,562
Above Normal	20,096	11,265	7,899	13,280	7,228	13,493	23,006	26,291	25,443	29,778	29,778	24,425	231,981	231,792
Normal	19,265	11,911	8,741	13,872	10,032	19,812	27,712	29,064	28,126	29,778	29,778	24,352	252,444	251,317
Below Normal	20,874	12,781	11,615	18,434	15,371	24,361	28,622	29,241	28,172	29,386	29,185	25,080	273,122	272,085
Dry	20,395	16,572	14,580	16,655	14,071	25,651	28,817	29,463	28,512	29,148	27,625	22,948	274,435	277,265
All Years	20,248	13,114	10,228	14,188	10,562	18,460	25,393	27,716	26,796	29,574	29,235	24,210	249,723	249,661
Total San Joaquin Pipeline (Acre-feet)														
(Average within	Type - G	ed by Uni	ired Run	LaGrang								Base		
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total	FY Total
Wet	24,854	19,046	14,449	7,730	6,015	7,611	15,398	23,962	23,189	27,589	27,589	26,526	223,960	222,101
Above Normal	25,015	18,522	14,830	9,346	6,015	8,831	19,117	25,015	24,208	27,589	27,589	26,699	232,776	232,343
Normal	24,616	19,046	14,865	10,691	6,864	11,060	25,145	27,054	26,181	27,589	27,589	26,699	247,400	246,589
Below Normal	25,239	19,334	18,748	15,927	11,585	16,789	26,374	27,085	26,212	27,421	27,141	25,562	267,417	267,585
Dry	24,676	19,046	19,087	15,995	12,621	18,195	26,411	27,292	26,411	27,232	26,757	23,247	266,970	269,749
All Years	24,886	18,997	16,405	11,955	8,624	12,505	22,496	26,081	25,239	27,485	27,334	25,756	247,763	247,729
Difference in Total San Joaquin Pipeline (Acre-feet)														
(Average within Year Type - Grouped by Unimpaired Runoff at LaGrange) 2018 WSIP minus Base														
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total	FY Total
Wet	-4,275	-5,869	-6,086	761	0	1,314	3,355	553	535	2,189	2,189	-2,348	-7,681	-6,540
Above Normal	-4,919	-7,257	-6,931	3,934	1,213	4,662	3,889	1,276	1,235	2,189	2,189	-2,274	-795	-551
Normal	-5,352	-7,135	-6,125	3,181	3,169	8,752	2,567	2,011	1,945	2,189	2,189	-2,348	5,044	4,728
Below Normal	-4,365	-6,553	-7,133	2,507	3,786	7,572	2,248	2,155	1,961	1,965	2,043	-482	5,705	4,500
Dry	-4,281	-2,474	-4,508	660	1,450	7,456	2,406	2,171	2,101	1,915	869	-299	7,465	7,516
All Years	-4,638	-5,883	-6,178	2,233	1,938	5,955	2,897	1,635	1,556	2,089	1,901	-1,546	1,960	1,932

2.3 Hetch Hetchy Reservoir and Releases

Compared to the WSIP setting, the variant setting would draw less water from the Tuolumne due to the lesser demand. This circumstance would lead to less draw from Hetch Hetchy Reservoir in the variant setting in most years. Figure 2.3-1 illustrates a chronological trace of the simulation of Hetch Hetchy Reservoir storage and stream releases. Shown in Figure 2.3-1 are the results for the WSIP, variant (2018 WSIP), and base settings. Supplementing the Figure 2.3-1 representation of Hetch Hetchy Reservoir storage are Table 2.3-1, Hetch Hetchy Reservoir Storage (2018 WSIP); Table 2.3-2, Hetch Hetchy Reservoir Storage (WSIP); and Table 2.3-3, Difference in Hetch Hetchy Reservoir Storage (2018 WSIP minus WSIP). Table 2.3-4 is provided to illustrate the difference in Hetch Hetchy Reservoir storage between the base and variant settings.

Table 2.3-3 shows that, by the end of summer, storage in Hetch Hetchy Reservoir associated with the variant setting would be greater than the storage in the WSIP setting in about 20 percent of the years, ranging from a minor increase to over 31,000 acre-feet in a year. The relatively minor increases in storage are attributable to years when summer diversions would be the same in both settings (SJPL operating at maximum capacity) but less water would be diverted in the fall due to the lesser water demand. The larger increases in storage are associated with drought periods, during which the differences in underlying demand and water delivery shortages between the WSIP and variant settings are greater.

Figure 2.3-1
Hetch Hetchy Reservoir Storage and Stream Release

Table 2.3-1
Hetch Hetchy Reservoir Storage (Acre-feet)

Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1921	282,609	278,092	255,917	247,975	195,384	160,826	163,128	278,579	360,400	360,400	326,811	296,708
1922	272,692	253,215	243,432	237,356	241,830	256,406	226,719	360,400	360,400	360,400	336,082	307,732
1923	286,405	270,794	276,871	283,590	288,738	283,923	259,278	360,400	360,400	360,400	333,186	310,962
1924	301,568	281,696	261,164	246,096	237,579	221,011	237,619	319,528	297,781	269,833	234,563	200,811
1925	176,725	188,760	201,798	184,735	199,033	213,024	231,155	360,400	360,400	356,465	334,210	301,427
1926	279,127	259,324	251,245	233,085	224,213	177,698	263,211	349,832	360,400	333,232	297,804	270,576
1927	248,777	251,050	251,687	247,855	275,438	296,429	354,032	360,400	360,400	360,400	333,718	307,952
1928	287,960	297,217	293,099	286,032	280,760	330,000	360,400	360,400	360,400	337,096	302,689	276,165
1929	254,035	233,992	219,838	204,878	194,666	193,633	209,190	360,400	360,400	348,102	314,426	283,355
1930	258,555	254,985	256,315	236,814	227,387	233,865	295,228	356,465	360,400	350,768	316,726	284,621
1931	259,237	241,452	227,760	210,946	199,767	191,885	233,170	325,434	322,155	292,228	259,610	234,867
1932	211,484	190,881	126,425	66,408	45,476	34,111	62,131	232,474	360,400	360,400	333,089	04,798
1933	278,840	260,094	245,851	228,098	213,520	182,969	167,504	200,819	360,400	360,400	326,593	293,382
1934	266,003	243,161	216,797	204,346	186,085	150,440	198,562	251,067	274,860	248,611	216,584	189,190
1935	167,090	180,813	193,600	130,416	91,354	53,449	109,363	266,254	360,400	360,400	331,788	302,361
1936	280,873	263,851	247,502	239,843	194,673	157,609	213,898	360,400	360,400	356,465	327,853	298,989
1937	278,787	260,055	240,667	223,486	179,093	127,495	126,725	360,400	360,400	360,400	327,212	297,350
1938	274,407	258,610	297,772	293,013	242,112	200,609	221,893	360,400	360,400	360,400	352,029	329,594
1939	323,052	317,095	308,612	299,875	295,466	308,950	356,592	360,400	360,400	332,157	299,492	271,524
1940	263,350	264,386	227,268	216,494	168,677	145,755	168,357	360,400	360,400	354,451	320,313	291,190
1941	271,263	253,545	249,892	184,092	138,160	101,885	92,264	319,429	360,400	360,400	341,291	311,165
1942	289,497	286,480	328,368	330,000	330,000	330,000	356,592	360,400	360,400	360,400	339,529	310,000
1943	286,861	289,159	296,594	321,028	330,000	330,000	360,400	360,400	360,400	360,400	334,820	307,969
1944	289,730	272,775	257,390	248,581	247,526	255,151	275,226	360,400	360,400	360,400	329,290	304,166
1945	283,254	300,146	317,051	301,901	275,964	215,180	221,432	342,932	360,400	360,400	334,928	308,047
1946	305,207	324,081	288,649	254,722	190,265	144,978	204,939	360,400	360,400	357,267	325,581	298,114
1947	281,975	281,245	281,849	276,388	278,587	288,395	337,342	360,400	356,592	332,847	297,991	267,446
1948	254,417	244,294	235,928	226,952	214,085	155,433	137,737	260,228	360,400	360,400	325,774	295,942
1949	270,211	248,715	229,974	215,741	194,598	128,217	171,843	303,299	360,400	339,844	305,128	276,849
1950	254,009	254,979	249,960	232,946	178,360	126,993	173,245	328,608	360,400	359,600	323,849	289,929
1951	263,034	330,000	330,000	273,739	223,537	199,065	226,940	352,902	360,400	360,400	326,780	299,924
1952	277,192	265,107	276,984	262,472	207,037	232,744	331,312	360,400	360,400	360,400	351,651	327,090
1953	306,915	287,555	286,634	305,694	311,161	314,290	360,400	360,400	360,400	360,400	330,136	304,813
1954	281,411	264,084	245,293	233,461	239,810	246,445	312,245	360,400	360,400	343,956	308,827	282,584
1955	259,833	257,884	265,101	247,276	236,225	168,911	137,956	234,795	356,592	344,694	309,939	275,067
1956	246,064	223,824	286,092	264,022	209,194	170,223	190,121	360,400	360,400	360,400	347,791	326,931
1957	309,473	300,247	282,855	271,022	283,025	289,326	320,587	360,400	360,400	360,400	326,823	296,564
1958	275,676	261,117	256,620	248,538	268,060	244,553	316,356	360,400	360,400	360,400	353,900	327,777
1959	305,000	285,354	263,804	258,795	228,073	176,551	195,296	236,053	288,523	260,077	223,494	212,535
1960	191,220	189,064	187,908	163,510	126,394	100,465	130,282	218,504	290,266	264,021	228,814	194,592
1961	166,799	147,604	122,185	103,560	94,937	89,820	136,861	229,076	274,760	248,652	223,685	200,188
1962	179,904	160,807	146,608	135,879	159,757	160,943	279,470	356,465	360,400	356,465	326,379	297,010
1963	273,823	254,662	242,067	251,423	310,058	322,016	350,074	360,400	360,400	360,400	336,396	305,026
1964	281,564	290,995	282,306	277,015	273,190	235,968	210,684	286,406	360,400	343,750	309,409	275,896
1965	245,809	253,115	321,455	286,120	235,159	179,819	185,636	297,805	360,400	360,400	360,400	339,909
1966	317,826	322,951	308,583	305,796	283,349	288,162	356,592	360,400	360,400	331,450	297,972	267,899
1967	241,427	234,658	273,811	290,049	304,992	330,000	352,295	360,400	360,400	360,400	360,400	336,965
1968	313,146	295,351	286,381	281,571	301,117	304,173	346,380	360,400	360,400	334,325	299,837	270,029
1969	254,522	266,986	267,609	326,006	330,000	330,000	360,400	360,400	360,400	360,400	349,426	324,498
1970	309,819	316,182	330,000	326,065	325,142	330,000	341,873	360,400	360,400	360,400	326,016	295,639
1971	270,928	270,971	287,195	306,077	320,804	322,357	349,749	360,400	360,400	356,465	325,764	294,564
1972	268,852	254,761	252,261	247,271	245,191	275,403	296,867	360,400	360,400	336,426	299,001	269,162
1973	244,428	230,983	238,924	251,779	262,465	275,113	322,681	360,400	360,400	353,990	322,828	292,848
1974	272,123	310,590	330,000	330,000	330,000	330,000	360,400	360,400	360,400	356,465	331,550	301,908
1975	277,436	272,650	276,651	258,972	268,065	287,929	234,337	360,400	360,400	356,465	324,162	297,200
1976	295,909	295,723	287,208	268,903	258,610	250,311	254,661	341,485	330,919	300,830	269,106	240,387
1977	218,384	195,661	175,732	156,532	141,297	119,701	126,961	144,655	185,682	158,583	127,611	103,776
1978	81,190	62,065	69,663	93,807	117,052	170,753	229,138	360,400	360,400	360,400	357,869	360,400
1979	330,000	313,085	298,796	309,602	320,487	330,000	360,400	360,400	360,400	356,097	320,734	287,352
1980	271,512	279,664	288,323	326,065	330,000	330,000	356,592	360,400	360,400	360,400	352,729	327,134
1981	303,223	284,771	272,418	260,876	264,288	260,790	271,414	360,400	360,400	330,185	292,628	264,472
1982	248,006	276,645	317,405	330,000	326,446	330,000	360,400	360,400	360,400	360,400	360,400	360,400
1983	326,065	330,000	330,000	330,000	330,000	330,000	356,951	360,400	360,400	360,400	360,400	357,167
1984	330,000	326,192	301,515	251,330	205,725	189,676	227,004	360,400	360,400	356,465	328,962	299,035
1985	277,894	296,425	304,499	286,883	274,950	272,162	359,303	360,400	360,400	333,535	296,865	266,723
1986	250,445	236,469	245,291	254,917	330,000	330,000	360,400	360,400	360,400	360,400	337,490	311,318
1987	293,620	273,938	250,752	234,807	227,102	216,794	272,945	360,400	360,400	328,763	292,248	259,162
1988	234,316	221,153	217,898	216,791	214,588	220,681	263,542	355,022	356,592	330,735	299,096	274,941
1989	250,690	230,116	214,166	206,589	208,221	254,241	360,400	360,400	360,400	347,970	317,138	297,556
1990	286,000	290,721	295,500	276,136	263,108	272,917	340,617	360,400	360,400	344,204	319,777	297,881
1991	276,582	259,570	244,114	225,926	211,787	220,991	241,549	360,400	360,400	357,093	326,278	304,043
1992	284,649	272,088	257,248	245,762	253,949	252,395	318,919	360,400	359,902	352,164	328,215	308,305
1993	291,250	275,503	268,001	293,942	309,264	330,000	356,592	360,400	360,400	360,400	339,684	309,861
1994	288,288	268,035	248,867	222,053	211,917	216,211	265,068	360,400	360,400	328,106	288,504	257,165
1995	236,917	257,505	274,105	318,014	330,000	329,098	356,592	360,400	360,400	360,400	360,400	346,115
1996	323,688	303,528	303,270	316,260	326,446	330,000	360,400	360,400	360,400	356,465	329,269	299,674
1997	277,861	299,279	317,856	330,000	300,695	283,968	360,400	360,400	360,400	360,400	334,509	303,667
1998	279,663	260,551	252,471	274,673	301,923	330,000	360,400	360,400	360,400	360,400	357,575	341,243
1999	322,965	312,973	298,470	292,088	254,288	201,103	185,376	360,400	360,400	360,400	328,523	299,272
2000	277,088	276,001	273,476	260,779	266,000	265,151	336,457	360,400	360,400	347,257	314,429	284,299
2001	261,745	243,718	231,697	213,737	207,523	235,058	289,029	360,400	360,186	330,828	293,698	264,148
2002	241,297	229,484	243,063	248,705	254,002	257,704	349,922	360,400	360,400	337,536	300,566	269,362
Avg (21-02)	268,676	262,479	259,859	252,012	243,600	235,735	269,224	338,182	352,712	343,017	316,086	289,447

Table 2.3-2
Hetch Hetchy Reservoir Storage (Acre-feet)

APPENDIX O3

Table 2.3-3
Difference in Hetch Hetchy Reservoir Storage (Acre-feet)

APPENDIX O3

Table 2.3-4
Difference in Hetch Hetchy Reservoir Storage (Acre-feet)

Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1921	2,198	4,959	4,960	4,963	4,966	4,342	3,658	3,076	0	0	-2,188	576
1922	9,138	13,741	18,688	18,699	18,710	18,710	18,710	0	0	0	-2,188	575
1923	8,186	12,790	12,790	12,797	12,804	1,387	1,387	0	0	0	-2,188	2,417
1924	10,978	13,740	14,691	17,554	20,142	14,339	5,052	335	-1,783	-3,969	-6,150	-6,143
1925	-1,383	17,951	37,930	32,150	17,566	6,055	5,313	0	0	0	-2,188	-4,304
1926	-4,302	-7,064	-16	-16	-13	-15,330	-13,488	-10,568	0	-2,188	-4,374	233
1927	5,941	10,544	11,496	7,697	7,702	2,945	1,104	0	0	0	-2,188	2,417
1928	6,221	10,824	13,679	11,783	9,210	281	0	0	0	-2,188	-4,373	234
1929	4,038	6,800	7,752	7,756	7,761	1,957	-160	0	0	-2,188	-4,374	-4,370
1930	389	19,723	39,701	33,921	24,402	12,891	10,773	0	0	-2,188	-4,373	-5,291
1931	-2,434	-1,514	5,574	6,528	7,391	1,588	-529	-2,717	-4,832	-7,015	-6,530	-3,761
1932	-3,759	-2,838	-1,897	-1,591	2,645	1,691	1,046	754	0	0	-2,188	576
1933	5,332	8,094	15,705	10,957	6,667	864	761	638	0	0	-2,188	-4,304
1934	-1,448	-3,290	-2,195	-1,415	-3,522	-9,788	-4,179	-6,364	-8,474	-10,650	-12,820	-11,056
1935	-8,196	11,138	31,116	26,406	22,153	10,358	6,874	5,270	0	0	-2,188	-1,265
1936	7,297	10,059	17,258	13,364	13,372	11,707	9,889	0	0	0	-2,188	575
1937	8,186	10,948	11,900	11,907	11,185	9,529	8,018	0	0	0	-2,188	575
1938	6,283	10,887	13,741	11,084	11,089	11,088	9,748	0	0	0	-2,188	576
1939	8,187	10,948	15,705	14,761	13,907	8,104	0	0	0	-2,188	-4,373	-5,291
1940	-531	18,803	35,223	19,926	17,643	14,796	12,490	0	0	-2,188	-4,374	-1,608
1941	6,003	8,766	14,397	14,405	12,626	10,593	8,102	6,094	0	0	-2,188	-2,187
1942	2,571	5,333	9,139	0	0	0	0	0	0	0	-2,188	-1,266
1943	3,492	8,095	15,706	15,713	7,596	0	0	0	0	0	-2,188	575
1944	6,284	9,046	11,900	10,004	4,682	-7,685	-9,803	0	0	,	-2,188	2,417
1945	10,978	30,312	50,291	44,510	39,377	39,377	34,600	30,669	0	0	-2,188	575
1946	6,284	10,887	10,887	10,892	10,898	9,551	8,059	0	0	-2,188	-4,374	-1,608
1947	6,955	12,479	15,333	20,097	20,109	9,549	7,432	0	0	-2,188	-4,374	-4,370
1948	-1,513	-1,513	6,097	6,782	7,645	1,841	1,554	1,305	0	0	-2,188	576
1949	6,283	6,284	7,235	12,020	16,324	14,297	11,995	10,054	3,808	1,616	-574	2,188
1950	5,992	25,326	45,993	28,530	27,001	22,763	18,761	15,708	0	-800	-2,988	-5,103
1951	-3,293	0	0	0	0	0	0	0	0	0	-2,188	2,417
1952	6,221	10,825	11,776	5,895	5,898	5,898	-547	0	0	0	-2,188	575
1953	6,284	9,046	9,046	9,050	9,053	-460	0	0	0	-	-2,188	3,337
1954	11,898	16,502	17,453	17,463	13,005	5,394	3,276	0	0	-2,188	-4,373	1,154
1955	9,716	29,050	44,271	27,839	15,653	9,850	8,315	6,974	-3,808	-5,992	-8,173	-10,284
1956	-7,425	-9,266	-4,758	-4,760	-4,763	-4,139	-3,481	0	0	0	-2,188	3,337
1957	7,141	11,745	12,697	12,703	7,383	-3,177	-5,295	0	0	0	-2,188	-437
1958	8,125	10,887	18,498	13,752	13,760	13,760	13,760	0	0	0	-2,188	-437
1959	5,271	8,033	8,984	8,039	8,043	-6,227	-5,492	-4,932	-7,044	-9,222	-11,394	-9,632
1960	-3,918	15,416	35,395	29,617	18,587	12,000	9,167	2,173	54	-2,134	-4,318	-6,432
1961	-3,574	-3,574	5,300	6,260	2,831	-2,973	-5,090	-7,272	-9,381	-11,556	-11,536	-11,523
1962	-10,565	-14,248	-16,150	-15,212	-16,089	-32,262	-39,903	-3,935	0	0	-2,188	575
1963	1,527	4,288	11,900	11,907	11,914	8,108	5,346	0	0	0	-2,188	-4,304
1964	1,406	6,010	6,961	2,207	-2,088	-7,892	-7,892	-6,967	3,808	1,616	-574	-2,692
1965	-882	18,451	23,517	23,527	23,538	22,738	19,359	16,610	0	0	0	4,603
1966	8,407	13,931	8,868	3,925	-542	-6,346	0	0	0	-2,188	-4,373	-3,910
1967	849	3,612	13,125	13,133	13,139	0	-3,683	0	0	0	0	-921
1968	4,788	7,550	14,637	8,936	3,786	-2,018	-4,136	0	0	-2,188	-4,374	-3,910
1969	3,703	6,466	11,222	11,229	0	0	0	0	0	0	-2,188	2,417
1970	6,221	25,555	40,575	-3,935	-4,858	-	-2,117	0	0	0	-2,188	575
1971	6,283	13,649	13,649	13,656	13,661	3,101	983	0	0	0	-2,188	-2,186
1972	3,523	6,285	11,993	16,756	16,766	10,963	8,846	0	0	-2,188	-4,373	-5,290
1973	-2,433	-1,513	6,098	6,101	6,105	6,105	1,502	0	0	-2,188	-4,374	234
1974	5,941	8,703	5,109	0	0	0	0	0	0	0	-2,188	2,417
1975	8,124	27,459	47,437	35,952	35,115	32,451	32,451	3,935	0	0	-2,188	2,417
1976	8,125	12,728	20,339	21,301	22,172	16,369	14,252	12,055	9,928	7,728	5,530	4,603
1977	6,503	4,661	7,516	10,375	12,962	7,159	5,041	2,846	722	-1,468	-2,510	-7,107
1978	-10,902	-9,981	-7,651	-7,655	-7,664	-7,665	-13,372	0	0	0	-2,188	0
1979	0	2,762	3,713	2,764	2,765	0	0	0	0	-2,188	-4,373	-3,450
1980	2,260	21,594	36,816	-3,935	3,554	0	0	0	0	0	-2,188	2,417
1981	6,222	10,825	18,436	12,738	7,590	-3,922	-3,921	0	0	-2,188	-4,374	233
1982	8,795	14,319	18,125	5,589	0	0		0	0	0	0	0
1983	0	0		0	0	0	-2,946	0	0	0	0	-921
1984	0	0			0	-9,738	-11,659	0	0	0	-2,188	-1,726
1985	3,032	22,365	42,344	31,805	23,229	17,426	15,308	0	0	-2,188	-4,374	-6,487
1986	-3,629	-5,471	1,617	2,568	1,757	0	0	0	0	0	-2,188	2,417
1987	8,124	10,886	11,837	16,602	20,907	15,104	12,987	2,092	0	-2,188	-4,373	-4,370
1988	-2,465	-4,306	2,782	-71	-2,649	-8,452	-10,570	-5,378	0	-2,188	-1,234	-1,233
1989	-1,232	-312	-3,166	-3,168	-3,169	-8,973	0	0	0	-1,046	-1,045	-2,886
1990	-4,787	14,547	29,769	19,223	10,642	4,838	2,720	0	0	0	2,854	1,011
1991	-893	3,710	6,565	7,520	8,383	772	-2,910	0	0	476	-1,428	1,335
1992	4,189	507	-1,396	-2,348	-3,210	-21,285	-28,006	0	-498	-498	4,260	4,256
1993	4,254	7,017	8,396	8,401	8,405	0	0	0	0	0	-2,188	-437
1994	8,126	10,888	11,839	14,699	6,115	312	-1,806	0	0	-2,188	-4,374	-2,621
1995	-717	18,618	38,597	38,619	20,001	3,033	0	0	0	0	0	2,762
1996	6,566	9,328	12,183	12,187	-3,554	3,935	2,624	0	0	0	-2,188	-438
1997	5,271	9,875	9,875	0	0	-7,611	0	0	0	0	-2,188	-2,186
1998	5,426	8,188	15,798	15,807	15,817	0	0	0	0	0	-2,188	-2,186
1999	1,620	4,382	7,236	2,482	2,484	2,483	2,183	0	0	0	-2,188	-437
2000	3,369	22,703	42,681	27,389	24,999	11,680	9,563	0	0	-2,188	-4,373	-2,621
2001	3,089	5,851	13,461	9,663	2,795	-8,622	-10,739	0	-214	-2,402	-4,587	-1,821
2002	6,742	9,504	16,163	12,368	8,938	-1,623	-3,741	0	0	-2,188	-4,374	-3,910
(21-02)	3,098	8,809	14,784	11,355	9,088	3,389	1,921	884	-216	-1,113	-2,878	-1,348

APPENDIX O3

Through the fall and winter, storage in Hetch Hetchy Reservoir would be the same or higher under the variant setting. Hetch Hetchy Reservoir would fill by the end of May during approximately 82 percent of the years, which would prevent any difference in storage from affecting the next summer's reservoir storage. Figure 2.3-2 illustrates the difference in reservoir storage, averaged by year type, for the variant and WSIP settings. Also shown is the average difference in storage for the two settings during the 82year simulation.

Table 2.3-4 illustrates the difference in Hetch Hetchy Reservoir storage between the variant and base settings. Immediately after filling Hetch Hetchy Reservoir (May or June, and then continuing through July), there would only be occasional differences in storage at the reservoir, typically a decrease of less than 12,000 acre-feet. This is indicative of the same amount of water being passed through the reservoir regardless of the size of the conveyance capacity of the SJPL. Water not diverted to the SJPL would return to the Tuolumne River and flow to Don Pedro Reservoir. In the late summer and early fall, there would consistently be a slight difference (lower) in storage levels between the two settings, as additional diversions to the SJPL would retain Bay Area reservoir storage. Some of this additional Hetch Hetchy Reservoir storage depletion would be ameliorated later in the fall and into winter as SJPL diversions are reduced due to less Bay Area reservoir replenishment needs and conveyance system maintenance. Storage becomes greater in November and December of the variant setting due to the assumed systemwide maintenance that would occur in the variant setting but not in the base setting. After December, the storage gain occurring in the variant setting would again be affected as replenishment of Bay Area reservoir storage resumes. In non-wet years, there is a difference in storage between the variant and base settings; the variant setting sometimes results in a lower storage in the reservoir by the end of April. Figure 2.3-3 illustrates the difference in reservoir storage, averaged by year type, between the variant and base settings. Also shown is the average difference in storage for the two settings during the 82-year simulation. Figure 2.3-4 illustrates the average monthly storage in Hetch Hetchy Reservoir for the 82-year simulation, and the range in storage for each month for the variant and base settings.

The difference in storage in Hetch Hetchy Reservoir attributed to the diversion effects of the variant would manifest in differences in releases from O'Shaughnessy Dam to the stream. A different amount of available reservoir space in the winter and spring due to the variant would lead to a different ability to regulate inflow, thus potentially changing the amount of water released to the stream that is in excess of minimum release requirements. Figure 2.3-1 illustrates the stream release from O'Shaughnessy Dam for the WSIP, variant, and base settings. Table 2.3-5 illustrates the difference in stream releases between the variant and WSIP settings. Compared to the WSIP setting, the variant exhibits an incrementally greater stream release, predominately during May or June, which is reflective of the months when releases to the stream are made in excess of minimum release requirements in anticipation of filling the reservoir. The exceptions to this circumstance, during which incrementally larger reductions in releases to the stream occur, are considered anomalous within the modeling and simply the result of shifting releases from one month to the next. The increase in releases is the result of a less-depleted reservoir, which is the result of lesser SFPUC demands between the settings.

Table 2.3-6 illustrates the difference in stream releases between the variant and base settings. In this comparison, releases could be either greater or less than depicted for the base setting, and these differences would occur predominately during May or June. Generally, Hetch Hetchy Reservoir storage would be slightly lower during non-wet years, leading to a reduction in stream releases during non-wetter years if a release occurs. During wetter years, the releases are projected to increase. The differences, either increases or decreases, are a result of the coincidence of several operational parameters affecting the release of water from the reservoir, including systemwide water demands, conveyance capacity and maintenance assumptions, and the watershed's hydrology.

Table 2.3-5 illustrates the difference in stream releases between the variant and WSIP settings, expressed in terms of a monthly volume (acre-feet) of flow. Table 2.3-7 illustrates the same information and the average monthly stream release for the variant and WSIP setting, expressed in average monthly flow (cfs). Table 2.3-5 shows an increase in monthly flow below O'Shaughnessy Dam of up to approximately 32,000 acre-feet. Considering the manner in which releases are determined and made to the stream, it is not always meaningful to quantify the effect of these changes in terms of average monthly

APPENDIX O3

Figure 2.3-2

Figure 2.3-3

Figure 2.3-4

APPENDIX O3

Table 2.3-5
Difference in Hetch Hetchy Reservoir Release to Stream (Acre-feet) 2018 WSIP minus WSIP

Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
1921	0	0	0	0	0	0	0	0	8,224	0	0	0	8,224
1922	0	0	0	0	0	0	0	22,812	0	0	0	0	22,812
1923	0	0	0	0	0	0	0	18,235	0	0	0	0	18,235
1924	0	0	0	0	0	0	0	0	0	0	0	0	0
1925	0	0	0	0	0	0	0	16,306	0	0	0	0	16,306
1926	0	0	0	0	0	0	0	0	0	0	0	0	0
1927	0	0	0	0	0	0	0	26,265	0	0	0	0	26,265
1928	0	0	0	0	0	0	0	2,741	0	0	0	0	2,741
1929	0	0	0	0	0	0	0	0	13,872	0	0	0	13,872
1930	0	0	0	0	0	0	0	0	0	0	0	0	0
1931	0	0	0	0	0	0	0	0	0	0	0	0	0
1932	0	0	0	0	0	0	0	0	2,798	0	0	0	2,798
1933	0	0	0	0	0	0	0	0	11,014	0	0	0	11,014
1934	0	0	0	0	0	0	0	0	0	0	0	0	0
1935	0	0	0	0	0	0	0	0	6,899	0	0	0	6,899
1936	0	0	0	0	0	0	0	15,759	0	0	0	0	15,759
1937	0	0	0	0	0	0	0	9,359	5,570	0	0	0	14,929
1938	0	0	0	0	0	0	0	19,469	0	0	0	0	19,469
1939	0	0	0	0	0	0	3,808	-4,045	0	0	0	0	-237
1940	0	0	0	0	0	0	0	1,791	0	0	0	0	1,791
1941	0	0	0	0	0	0	0	0	7,337	0	0	0	7,337
1942	0	0	0	0	0	0	0	0	0	0	0	0	0
1943	0	0	0	0	0	0	0	0	0	0	0	0	0
1944	0	0	0	0	0	0	0	21,859	0	0	0	0	21,859
1945	0	0	0	0	0	0	0	0	18,365	0	0	0	18,365
1946	0	0	0	0	0	0	0	14,088	0	0	0	0	14,088
1947	0	0	0	0	0	0	0	31,870	0	0	0	0	31,870
1948	0	0	0	0	0	0	0	0	12,616	0	0	0	12,616
1949	0	0	0	0	0	0	0	0	5,408	0	0	0	5,408
1950	0	0	0	0	0	0	0	0	8,943	0	0	0	8,943
1951	0	3,996	0	0	0	0	0	0	8,010	0	0	0	12,006
1952	0	0	0	0	0	0	0	13,144	0	0	0	0	13,144
1953	0	0	0	0	0	0	0	2,049	0	0	0	0	2,049
1954	0	0	0	0	0	0	0	26,624	0	0	0	0	26,624
1955	0	0	0	0	0	0	0	0	3,808	0	0	0	3,808
1956	0	0	0	0	0	0	0	1,373	0	0	0	0	1,373
1957	0	0	0	0	0	0	0	27,391	0	0	0	0	27,391
1958	0	0	0	0	0	0	0	24,198	0	0	0	0	24,198
1959	0	0	0	0	0	0	0	0	0	0	0	0	0
1960	0	0	0	0	0	0	0	0	0	0	0	0	0
1961	0	0	0	0	0	0	0	0	0	0	0	0	0
1962	0	0	0	0	0	0	0	3,935	9,227	0	0	0	13,162
1963	0	0	0	0	0	0	0	20,897	0	0	0	0	20,897
1964	0	0	0	0	0	0	0	0	0	0	0	0	0
1965	0	0	0	0	0	0	0	0	1,695	0	0	0	1,695
1966	0	0	0	0	0	0	0	0	0	0	0	0	0
1967	0	0	0	0	0	0	0	9,309	0	0	0	0	9,309
1968	0	0	0	0	0	0	0	17,457	0	0	0	0	17,457
1969	0	0	0	0	0	0	0	0	0	0	0	0	0
1970	0	0	0	0	0	43	0	7,200	0	0	0	0	7,243
1971	0	0	0	0	0	0	0	19,814	0	0	0	0	19,814
1972	0	0	0	0	0	0	0	31,356	0	0	0	0	31,356
1973	0	0	0	0	0	0	0	15,425	0	0	0	0	15,425
1974	0	0	0	0	0	0	0	0	0	0	0	0	0
1975	0	0	0	0	0	0	0	15,964	0	0	0	0	15,964
1976	0	0	0	0	0	0	0	0	0	0	0	0	0
1977	0	0	0	0	0	0	0	0	0	0	0	0	0
1978	0	0	0	0	0	0	0	25,740	0	0	0	0	25,740
1979	0	0	0	0	0	0	0	0	0	0	0	0	0
1980	0	0	0	3,935	-3,554	0	0	0	0	0	0	0	381
1981	0	0	0	0	0	0	0	2,684	10,310	0	0	0	12,994
1982	0	0	0	0	0	0	0	0	0	0	0	0	0
1983	0	0	0	0	0	0	0	1,959	0	0	0	0	1,959
1984	0	0	0	0	0	0	0		0	0	0	0	0
1985	0	0	0	0	0	0	0	11,152	0	0	0	0	11,152
1986	0	0	0	0	0	10,235	3,935	0	0	0	0	0	14,170
1987	0	0	0	0	0	0	0	0	0	0	0	0	0
1988	0	0	0	0	0	0	0		3,808	0	0	0	3,808
1989	0	0	0	0	0	0	364	33,044	0	0	0	0	33,408
1990	0	0	0	0	0	0	0	0	0	0	0	0	0
1991	0	0	0	0	0	0	0	0	29,675	0	0	0	29,675
1992	0	0	0	0	0	0	0	0	0	0	0	0	0
1993	0	0	0	0	0	0	0	0	0	0	0	0	0
1994	0	0	0	0	0	0	0	0	0	0	0	0	0
1995	0	0	0	0	0	0	0	0	0	0	0	0	0
1996	0	0	0	0	3,554	-3,935	1,311	2,785	0	0	0	0	3,715
1997	0	0	0	16,086	0	0	0	0	0	0	0	0	16,086
1998	0	0	0	0	0	0	0	0	0	0	0	0	0
1999	0	0	0	0	0	0	0	10,281	2,950	0	0	0	13,231
2000	0	0	0	0	0	0	0	17,759	0	0	0	0	17,759
2001	0	0	0	0	0	0	0	28,859	0	0	0	0	28,859
2002	0	0	0	0	0	0	0	27,763	0	0	0	0	27,763
(21-02)	0	49	0	244	0	77	115	7,252	2,080	0	0	0	9,817

APPENDIX O3

Table 2.3-6
Difference in Hetch Hetchy Reservoir Release to Stream (Acre-feet) 2018 WSIP minus Base

Table 2.3-7

Hetch Hetchy Reservoir Release to Stream (CFS)												
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Wet	55	51	51	187	85	94	148	2,509	4,551	2,034	184	89
Above Normal	55	93	88	66	93	90	133	1,303	3,139	379	125	89
Normal	54	54	50	55	74	74	98	1,437	1,924	167	122	86
Below Normal	55	55	46	43	51	63	92	727	770	113	111	73
Dry	53	53	44	40	44	50	60	172	168	86	86	65
All Years	54	62	56	77	70	75	106	1,224	2,107	548	125	81
Hetch Hetchy Reservoir Release to Stream (CFS)												
(Average within	- Gr	by Un	d Run	Grang								WSIP
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Wet	55	51	51	167	89	84	144	2,412	4,550	2,034	184	89
Above Normal	55	89	88	66	89	94	131	1,192	3,093	379	125	89
Normal	54	54	50	55	74	74	98	1,253	1,890	167	122	86
Below Normal	55	55	46	43	51	63	91	550	709	113	111	73
Dry	53	53	44	40	44	50	56	156	139	86	86	65
All Years	54	61	56	73	70	73	104	1,107	2,072	548	125	81
Difference in Hetch Hetchy Reservoir Release to Stream (CFS)												
(Average within Year Type - Grouped by Unimpaired Runoff at LaGrange) 2018 WSIP minus WSIP												
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Wet	0	0	0	20	-4	10	4	97	2	0	0	0
Above Normal	0	4	0	0	4	-4	1	112	46	0	0	0
Normal	0	0	0	0	0	0	0	184	34	0	0	0
Below Normal	0	0	0	0	0	0	0	177	62	0	0	0
Dry	0	0	0	0	0	0	4	16	29	0	0	0
All Years	0	1	0	4	0	1	2	118	35	0	0	0

flow (cfs). ${ }^{1}$ When comparing the variant to the WSIP setting, a change in the volume of release from O'Shaughnessy Dam to the stream would likely result in the release being delayed or initiated earlier by a matter of days. Typical springtime releases, when initiated, amount to a release of up to $3,000 \mathrm{cfs}$ (approximately 6,000 acre-feet over the span of a day). Using the assumption that a change in release volume equates to a delay or an earlier initiation of releasing 6,000 acre-feet per day means that the difference in stream release between the variant and WSIP would be up to an added five days of release. Normally, this change in release would not affect the peak stream release rate during a year. Table 2.3-8 illustrates the average monthly stream release for the variant and base settings, and the differences, expressed in average monthly flow (cfs). Table 2.3-6 illustrates that the difference in monthly flow below O'Shaughnessy Dam between the variant and base settings could range from an increase of approximately 30,000 acre-feet to a decrease of approximately 36,000 acre-feet. Using the same metric as described above to estimate the delay or addition in the number days of release to the stream, the variant could lead to an effect ranging from an increase of five days of release to a decrease of up to 6 days compared to the base setting.

Table 2.3-8

Hetch Hetchy Reservoir Release to Stream (CFS)												
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Wet	55	51	51	187	85	94	148	2,509	4,551	2,034	184	89
Above Normal	55	93	88	66	93	90	133	1,303	3,139	379	125	89
Normal	54	54	50	55	74	74	98	1,437	1,924	167	122	86
Below Normal	55	55	46	43	51	63	92	727	770	113	111	73
Dry	53	53	44	40	44	50	60	172	168	86	86	65
All Years	54	62	56	77	70	75	106	1,224	2,107	548	125	81
Hetch Hetchy Reservoir Release to Stream (CFS)												
(Average within Year Type - Grouped by Unimpaired Runoff at LaGrange) Base												
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Wet	55	51	51	173	89	93	148	2,510	4,534	2,034	184	90
Above Normal	55	96	88	66	93	86	131	1,249	3,092	379	125	89
Normal	54	54	50	51	74	74	98	1,443	1,909	167	122	86
Below Normal	55	55	46	43	51	63	91	723	763	113	111	73
Dry	53	53	44	40	44	50	60	199	168	86	86	65
All Years	54	62	56	74	70	73	106	1,219	2,089	548	125	81
Difference in Hetch Hetchy Reservoir Release to Stream (CFS)												
(Average within Year Type - Grouped by Unimpaired Runoff at LaGrange) 2018 WSIP minus Base												
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Wet	0	0	0	14	-4	2	0	-1	17	0	0	0
Above Normal	0	-3	0	0	0	4	1	54	46	0	0	0
Normal	0	0	0	4	0	0	0	-6	15	0	0	0
Below Normal	0	0	0	0	0	0	0	4	7	0	0	0
Dry	0	0	0	0	0	0	0	-27	0	0	0	0
All Years	0	-1	0	4	-1		0	5	17	0	0	0

[^4]
APPENDIX O3

2.4 Lake Lloyd and Lake Eleanor

Compared to the operation of the WSIP, the operation of Lake Lloyd and Lake Eleanor are simulated to be only slightly different for the variant. Figure 2.4-1 illustrates a chronological trace of the simulation of Lake Lloyd storage and stream releases. Shown in Figure 2.4-1 are the results for the WSIP, variant, and base settings. The operation resulting from the variant is essentially the same as the WSIP setting, including during drought. Although the level of delivery between the variant and base settings is essentially the same (net 265 mgd demand) during the 1987-1992 drought, water delivery reliability has been improved in the variant setting; as a result, the drawdown of Lake Lloyd during this period looks closer to that in the WSIP setting. Although there is less water delivered during this period in the variant setting compared to the WSIP setting, more water is delivered in the variant setting than in the base setting. The additional draw of water reduced the amount of water released from Hetch Hetchy Reservoir to Don Pedro Reservoir in the variant setting, which, in order to satisfy TID/MID entitlements to inflow, was met with additional releases from Lake Lloyd, similar to the WSIP setting. The additional release from Lake Lloyd associated with the variant appears to be approximately the same as in the WSIP setting in this instance, which is partially a factor of modeling discretion in that the HH/LSM makes release decisions in the form of block amounts of releases. Additional refinement of modeling assumptions would likely produce a result that places Lake Lloyd storage during this drought period more between the base setting and WSIP setting results. Otherwise, the results for Lake Lloyd storage are essentially the same between the WSIP and variant settings.

Figure 2.4-2 illustrates the almost identical operation of Lake Eleanor for the variant and WSIP settings. Also shown in Figure 2.4-2 is the operation for the base setting. Any difference in the Lake Eleanor operation would be caused by a small change in operation at Lake Lloyd that would affect the operation of the Cherry-Eleanor Tunnel between the two watersheds. Any difference that occurs in the simulations is more likely the result of modeling discretion as opposed to any substantive difference in operation.

Supplementing the Figure 2.4-1 representation of Lake Lloyd stream releases is Table 2.4-1, which illustrates releases for the variant and WSIP settings, and the difference in releases between the two settings. Table 2.4-2 provides the same form of information for the variant and base settings. With essentially no change in reservoir operations, stream releases will not be different.

2.5 Don Pedro Reservoir and La Grange Releases

A change in Don Pedro Reservoir operation is caused by changes in inflow to the reservoir. The changes in inflow to the reservoir are the result of net changes within the operation of the upstream SFPUC facilities described previously, and other changes in SFPUC operations associated with diversions to the Holm, Kirkwood, and Moccasin Powerhouses. Figure 2.5-1 illustrates a chronological trace of the simulation of Don Pedro Reservoir storage and Tuolumne River stream releases from La Grange Dam. Shown in Figure 2.5-1 are the results for the WSIP, variant, and base settings. Supplementing the Figure 2.5-1 representation of Don Pedro Reservoir storage are Table 2.5-1, Don Pedro Reservoir Storage (2018 WSIP); Table 2.5-2, Don Pedro Reservoir Storage (WSIP); and Table 2.5-3, Difference in Don Pedro Reservoir Storage (2018 WSIP minus WSIP). Table 2.5-4 is provided to illustrate the difference in Don Pedro Reservoir storage between the base and variant settings.

Table 2.5-3 shows that, throughout many years, the storage in Don Pedro Reservoir associated with the variant setting would differ from the storage in the WSIP setting, and this difference would always be more storage. Table 2.5-4 illustrates that the variant setting results for Don Pedro Reservoir storage are close to the storage results depicted for the base setting, although typically lower than the base setting. Compared to the WSIP setting, the differences in storage are indicative of the increases to the inflow of Don Pedro Reservoir that are due to lesser demands and SJPL diversions in the variant setting. The increases in inflow typically occur during the winter through early summer period. Comparing to the base setting, the variant would result in typically less inflow to Don Pedro Reservoir during non-wet years and particularly during drought periods when more water is diverted to the SJPL in the variant setting. Less inflow leads to less reservoir storage.

Figure 2.4-1
Lake Lloyd Storage and Stream Release

APPENDIX O3

Figure 2.4-2
Lake Eleanor Storage and Stream Release

APPENDIX O3

Table 2.4-1

Lake Lloyd Release to Stream (CFS)												
(Average within Year Type - Grouped by Unimpaired Runoff at LaGrange) 2018 WSIP												
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Wet	5	11	134	107	25	21	5	284	1,058	363	15	15
Above Normal	5	72	25	5	16	5	5	166	446	16	15	15
Normal	5	5	5	16	5	5	5	110	162	15	15	15
Below Normal	5	5	5	5	5	5	8	39	43	16	15	15
Dry	5	5	5	5	5	5	5	5	5	16	15	15
All Years	5	20	34	27	11	8	6	120	340	83	15	15
Lake Lloyd Release to Stream (CFS)												
(Average within Year Type - Grouped by Unimpaired Runoff at LaGrange) WSIP												
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Wet	5	11	134	107	25	21	5	284	1,058	363	15	15
Above Normal	5	72	25	5	16	5	5	167	451	16	15	15
Normal	5	5	5	16	5	5	5	110	162	15	15	15
Below Normal	5	5	5	5	5	5	8	39	43	16	15	15
Dry	5	5	5	5	5	5	5	5	5	16	15	15
All Years	5	20	34	27	11	8	6	121	341	83	15	15
Difference in Lake Lloyd Release to Stream (CFS)												
(Average within Year Type - Grouped by Unimpaired Runoff at LaGrange) 2018 WSIP minus WSIP												
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Wet	0	0	0	0	0	0	0	0	0	0	0	0
Above Normal	0	0	0	0	0	0	0	-1	-5	0	0	0
Normal	0	0	0	0	0	0	0	0	0	0	0	0
Below Normal	0	0	0	0	0	0	0	0	0	0	0	0
Dry	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	0	0	0	0	0	0	-1	0	0	0

Table 2.4-2

Figure 2.5-1
Don Pedro Reservoir Storage and Release below La Grange Dam

Table 2.5-1
Don Pedro Reservoir Storage (Acre-feet)

Table 2.5-2
Don Pedro Reservoir Storage (Acre-feet)

Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1921	1,262,860	1,277,365	1,340,344	1,508,876	1,689,999	1,690,000	1,713,000	1,758,255	1,920,087	1,785,379	1,633,202	1,551,799
1922	1,466,449	1,451,643	1,475,936	1,496,100	1,682,686	1,690,000	1,713,000	1,965,236	2,030,000	1,950,094	1,790,026	1,700,016
1923	1,638,028	1,643,364	1,689,999	1,689,989	1,689,997	1,690,000	1,713,000	1,799,363	1,900,966	1,828,869	1,683,448	1,632,370
1924	1,563,169	1,547,842	1,533,824	1,515,415	1,506,005	1,417,560	1,338,399	1,262,605	1,162,134	1,052,503	951,855	904,167
1925	906,788	921,085	985,076	1,028,777	1,205,262	1,311,674	1,436,468	1,560,568	1,684,578	1,582,202	1,438,920	1,367,376
1926	1,304,106	1,296,082	1,296,519	1,290,435	1,361,093	1,400,064	1,518,241	1,532,438	1,430,226	1,287,212	1,162,635	1,099,288
1927	1,044,610	1,084,270	1,129,224	1,168,777	1,346,690	1,463,332	1,567,658	1,688,723	1,936,134	1,852,362	1,703,718	1,627,130
1928	1,606,224	1,637,560	1,672,026	1,675,150	1,689,999	1,690,000	1,701,151	1,877,285	1,835,437	1,667,682	1,522,481	1,445,074
1929	1,362,145	1,353,824	1,350,930	1,337,716	1,346,569	1,351,080	1,341,527	1,323,621	1,392,489	1,266,466	1,150,912	1,087,613
1930	1,032,080	1,016,460	1,051,972	1,071,954	1,112,838	1,138,506	1,107,377	1,098,218	1,186,818	1,067,154	960,515	908,251
1931	864,235	866,605	904,039	902,201	933,725	896,662	839,706	804,980	747,051	671,410	610,497	591,503
1932	565,821	560,723	704,485	844,787	1,084,372	1,221,695	1,205,745	1,259,030	1,378,752	1,327,642	1,189,590	1,113,456
1933	1,025,224	1,000,826	998,521	983,959	1,008,603	995,965	955,100	959,906	1,007,489	894,719	782,336	724,120
1934	667,461	656,295	676,788	711,356	777,968	868,739	854,724	813,053	786,448	712,923	652,109	634,358
1935	624,570	638,297	677,837	832,051	956,075	1,079,921	1,337,695	1,442,297	1,633,298	1,541,356	1,416,179	1,343,212
1936	1,311,194	1,303,236	1,297,699	1,351,659	1,689,999	1,690,000	1,713,000	1,808,939	2,003,094	1,900,592	1,747,881	1,665,690
1937	1,613,022	1,592,326	1,585,791	1,579,717	1,689,994	1,690,000	1,713,000	1,792,830	1,982,099	1,843,316	1,694,437	1,610,230
1938	1,536,751	1,528,196	1,689,998	1,689,992	1,689,987	1,690,000	1,690,000	1,730,000	2,025,000	1,959,369	1,790,073	1,700,032
1939	1,672,242	1,671,809	1,685,673	1,689,024	1,689,999	1,690,000	1,634,629	1,601,698	1,473,709	1,301,817	1,157,373	1,119,194
1940	1,077,628	1,070,702	1,134,704	1,288,559	1,565,488	1,690,000	1,713,000	1,808,008	1,950,520	1,780,688	1,627,700	1,539,737
1941	1,469,773	1,454,423	1,553,735	1,689,994	1,689,991	1,690,000	1,690,000	1,804,234	2,030,000	1,950,157	1,790,024	1,700,010
1942	1,641,462	1,634,171	1,689,999	1,689,982	1,689,995	1,690,000	1,713,000	1,765,000	2,027,000	1,950,170	1,790,025	1,700,004
1943	1,619,298	1,656,980	1,690,000	1,689,976	1,689,995	1,690,000	1,713,000	1,940,240	2,030,000	1,940,444	1,790,004	1,700,004
1944	1,627,652	1,614,506	1,602,762	1,595,713	1,659,696	1,690,000	1,654,802	1,700,608	1,738,836	1,608,117	1,463,726	1,386,992
1945	1,362,396	1,410,433	1,456,868	1,483,156	1,689,997	1,690,000	1,713,000	1,750,377	1,973,670	1,906,466	1,749,519	1,662,142
1946	1,664,336	1,690,000	1,689,996	1,689,984	1,689,995	1,690,000	1,713,000	1,726,331	1,786,301	1,618,009	1,459,654	1,373,770
1947	1,314,592	1,331,036	1,364,362	1,376,577	1,405,177	1,370,566	1,295,486	1,351,369	1,288,812	1,144,830	1,017,268	954,574
1948	958,700	959,989	998,610	997,725	983,836	1,013,678	1,114,286	1,251,048	1,420,232	1,377,867	1,303,272	1,271,554
1949	1,247,966	1,239,259	1,234,425	1,223,326	1,235,015	1,400,436	1,383,115	1,432,798	1,409,371	1,242,728	1,096,786	1,022,286
1950	944,784	935,019	938,337	962,506	1,119,822	1,253,320	1,285,258	1,291,998	1,375,323	1,221,712	1,078,645	1,020,719
1951	1,018,036	1,422,514	1,689,995	1,689,971	1,689,993	1,690,000	1,664,085	1,570,386	1,596,323	1,438,802	1,296,271	1,217,452
1952	1,176,472	1,184,189	1,305,781	1,533,995	1,689,998	1,690,000	1,690,000	1,895,000	2,030,000	1,951,049	1,790,051	1,700,027
1953	1,614,775	1,604,850	1,619,190	1,689,999	1,689,998	1,688,681	1,619,217	1,588,332	1,773,663	1,724,813	1,589,215	1,514,922
1954	1,449,795	1,449,008	1,452,649	1,459,444	1,505,884	1,611,838	1,643,837	1,773,541	1,769,428	1,605,391	1,456,830	1,379,013
1955	1,300,328	1,300,104	1,318,386	1,350,951	1,401,218	1,464,906	1,489,052	1,525,796	1,487,090	1,348,288	1,221,076	1,163,037
1956	1,100,763	1,099,427	1,651,474	1,689,947	1,689,993	1,690,000	1,713,000	1,804,698	2,030,000	1,950,170	1,790,030	1,700,025
1957	1,639,825	1,624,492	1,616,539	1,610,979	1,668,413	1,690,000	1,553,124	1,584,074	1,786,699	1,635,352	1,492,723	1,419,571
1958	1,403,575	1,396,361	1,409,069	1,432,024	1,578,593	1,690,000	1,690,000	1,910,000	2,030,000	1,950,170	1,790,046	1,700,029
1959	1,611,062	1,589,728	1,567,833	1,592,273	1,689,999	1,690,000	1,662,406	1,600,478	1,493,480	1,324,246	1,178,165	1,178,441
1960	1,101,196	1,090,401	1,113,627	1,113,311	1,220,539	1,228,588	1,240,002	1,245,830	1,168,185	1,034,178	923,226	874,650
1961	827,383	826,615	897,810	899,493	908,561	870,204	842,562	814,709	769,512	703,148	648,423	629,635
1962	604,125	599,069	626,802	630,729	817,825	938,956	931,539	835,624	1,048,335	953,860	814,699	742,797
1963	700,558	694,902	745,217	790,246	957,421	1,023,119	1,119,414	1,363,268	1,654,516	1,631,866	1,513,806	1,455,856
1964	1,437,657	1,487,272	1,502,934	1,521,014	1,535,522	1,502,343	1,443,836	1,438,577	1,397,068	1,238,632	1,101,362	1,031,330
1965	1,018,694	1,042,070	1,471,762	1,689,988	1,689,993	1,690,000	1,713,000	1,743,852	1,900,867	1,898,947	1,790,038	1,700,028
1966	1,615,736	1,690,000	1,689,998	1,689,996	1,689,998	1,690,000	1,670,732	1,742,447	1,620,676	1,452,534	1,306,169	1,236,095
1967	1,160,837	1,194,375	1,348,066	1,447,078	1,544,910	1,690,000	1,690,000	1,880,000	2,030,000	2,030,000	1,790,252	1,700,021
1968	1,619,820	1,607,624	1,605,760	1,605,959	1,668,870	1,690,000	1,614,396	1,614,311	1,547,133	1,375,977	1,237,984	1,160,815
1969	1,124,725	1,154,047	1,243,529	1,689,996	1,689,990	1,690,000	1,690,000	1,930,000	2,030,000	1,975,279	1,790,111	1,700,033
1970	1,676,114	1,681,553	1,689,999	1,689,952	1,689,996	1,690,000	1,649,691	1,718,076	1,804,962	1,670,839	1,531,070	1,453,473
1971	1,394,102	1,437,025	1,524,073	1,589,976	1,659,167	1,690,000	1,647,943	1,676,856	1,840,272	1,736,038	1,599,726	1,530,826
1972	1,469,268	1,477,826	1,521,421	1,571,887	1,625,342	1,603,292	1,501,630	1,475,950	1,480,830	1,319,081	1,185,074	1,119,002
1973	1,081,006	1,094,033	1,176,102	1,304,888	1,484,502	1,646,959	1,675,219	1,921,511	2,030,000	1,863,873	1,716,891	1,634,144
1974	1,625,114	1,690,000	1,689,998	1,689,983	1,689,998	1,690,000	1,717,600	1,964,185	2,030,000	1,943,894	1,790,018	1,700,018
1975	1,671,620	1,661,732	1,660,185	1,665,519	1,689,996	1,690,000	1,717,600	1,824,854	2,030,000	1,950,013	1,790,077	1,700,024
1976	1,690,000	1,690,000	1,690,000	1,664,706	1,649,459	1,519,032	1,432,156	1,326,070	1,216,796	1,085,092	998,502	968,734
1977	932,654	925,543	955,652	938,503	920,299	807,858	717,610	671,981	616,184	544,084	486,059	467,586
1978	447,583	445,345	497,628	642,718	811,604	1,050,470	1,227,230	1,356,274	1,761,000	1,841,159	1,704,419	1,692,926
1979	1,606,278	1,609,357	1,608,413	1,689,999	1,689,995	1,690,000	1,690,000	1,717,600	1,827,795	1,673,824	1,527,042	1,450,952
1980	1,419,903	1,422,622	1,442,656	1,689,977	1,689,987	1,690,000	1,717,600	1,890,400	1,960,200	1,950,171	1,790,057	1,700,035
1981	1,617,942	1,596,204	1,588,406	1,595,955	1,619,607	1,690,000	1,710,315	1,694,081	1,626,429	1,461,340	1,330,112	1,262,473
1982	1,253,640	1,360,563	1,511,306	1,689,997	1,689,988	1,690,000	1,717,600	1,876,400	2,002,900	1,954,717	1,790,097	1,700,116
1983	1,690,000	1,690,000	1,689,995	1,689,966	1,689,989	1,294,700	1,264,000	1,270,800	1,851,400	2,030,000	1,869,137	1,700,118
1984	1,666,919	1,690,000	1,689,992	1,689,972	1,689,993	1,690,000	1,614,072	1,682,328	1,778,205	1,646,266	1,496,949	1,414,071
1985	1,399,091	1,434,211	1,478,590	1,469,173	1,504,226	1,570,360	1,558,812	1,616,719	1,550,570	1,386,112	1,251,881	1,188,728
1986	1,162,153	1,183,366	1,254,950	1,319,946	1,689,994	1,690,000	1,717,600	1,888,300	2,001,400	1,917,776	1,770,749	1,700,004
1987	1,641,221	1,619,848	1,601,298	1,570,175	1,566,241	1,592,870	1,533,147	1,433,211	1,330,588	1,195,991	1,085,371	1,032,594
1988	1,010,460	1,009,573	1,045,756	1,099,567	1,155,125	1,128,364	1,103,870	1,063,204	1,011,973	943,381	884,236	862,821
1989	836,632	844,157	876,836	900,479	930,034	1,051,709	1,029,659	1,110,864	1,160,578	1,025,069	913,162	908,781
1990	935,547	934,238	954,290	956,979	989,562	968,936	944,775	965,169	990,902	924,588	852,141	815,058
1991	799,492	794,262	814,409	803,540	782,227	856,893	858,476	917,797	1,020,071	946,830	874,711	843,590
1992	844,030	841,586	863,738	868,291	931,612	990,953	1,044,352	1,043,659	967,160	874,930	761,589	698,367
1993	662,549	656,233	682,056	877,956	1,027,740	1,267,172	1,365,280	1,684,448	1,941,790	1,923,275	1,785,144	1,700,014
1994	1,627,176	1,612,969	1,599,152	1,589,196	1,599,258	1,567,682	1,531,904	1,523,687	1,478,913	1,356,482	1,256,718	1,211,217
1995	1,172,146	1,191,956	1,236,737	1,494,252	1,599,122	1,690,000	1,717,600	1,629,700	1,982,800	2,030,000	1,814,001	1,700,059
1996	1,608,079	1,583,093	1,604,410	1,672,573	1,689,990	1,690,000	1,717,600	2,002,400	2,030,000	1,930,383	1,782,384	1,700,010
1997	1,667,198	1,690,000	1,689,993	1,689,875	1,689,994	1,690,000	1,598,189	1,839,987	1,951,576	1,810,929	1,668,846	1,615,122
1998	1,533,848	1,527,463	1,528,868	1,690,000	1,689,989	1,690,000	1,717,600	1,714,000	1,987,500	2,030,000	1,790,242	1,700,022
1999	1,662,014	1,675,303	1,690,000	1,689,986	1,689,990	1,690,000	1,717,600	1,781,250	1,998,452	1,868,511	1,726,752	1,652,772
2000	1,566,486	1,554,834	1,539,188	1,615,107	1,689,994	1,690,000	1,717,600	1,981,851	2,030,000	1,864,407	1,719,364	1,644,682
2001	1,634,728	1,622,232	1,613,706	1,605,692	1,629,054	1,690,000	1,716,911	1,801,382	1,668,653	1,504,167	1,365,411	1,300,012
2002	1,238,260	1,249,893	1,323,366	1,378,790	1,430,954	1,481,487	1,466,303	1,583,557	1,606,470	1,443,430	1,305,249	1,232,624
Avg (21-02)	1,289,807	1,299,980	1,345,245	1,393,639	1,456,995	1,482,690	1,485,599	1,553,787	1,637,503	1,537,849	1,401,689	1,333,676

Table 2.5-3
Difference in Don Pedro Reservoir Storage (Acre-feet)

Table 2.5-4
Difference in Don Pedro Reservoir Storage (Acre-feet)

Difference in	Pedr	servoir	torage	(Acre-fe							018 WS	us B
Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1921	0	0	0	0	0	0	0	-1,607	-648	-2,828	-2,815	-2,807
1922	-2,800	-2,800	-2,799	-2,800	0	0	0	15,826	0	-5	0	0
1923	0	0	0	0	0	0	0	434	-486	-2,668	-2,656	-2,647
1924	-2,642	-2,641	-2,640	-2,642	-2,642	-2,641	4,447	6,884	6,791	6,676	6,577	6,513
1925	6,495	6,490	6,489	6,484	6,483	6,472	5,090	8,195	6,054	3,844	3,827	3,815
1926	3,807	3,805	3,844	3,845	3,843	3,841	-764	-5,857	-18,492	-18,408	-18,322	-18,261
1927	-18,223	-18,213	-3,466	-3,467	-3,467	-3,466	-3,462	-5,260	0	-2,184	-5	0
1928	0	0	0	0	0	0	0	-950	-1,866	-1,858	-1,850	-1,844
1929	-1,841	-1,839	-1,839	-1,840	-1,840	-1,839	-1,837	-4,177	-6,277	-6,249	-6,220	-6,199
1930	-6,186	-6,183	-6,183	-6,185	-6,186	-6,183	-6,177	2,407	286	285	284	282
1931	282	281	281	282	282	282	281	281	279	278	276	275
1932	275	275	-1,617	-5,732	-9,971	-21,567	-25,781	-28,366	-30,365	-32,412	-32,263	-32,152
1933	-32,085	-32,067	-32,068	-32,079	-32,081	-32,068	-34,052	-36,027	-37,380	-39,394	-39,207	-39,066
1934	-38,982	-38,959	-34,222	-37,043	-34,080	-33,605	-35,480	-41,192	-41,045	-40,846	-40,651	-40,508
1935	-40,421	-40,397	-40,399	-53,757	-64,082	-57,213	-60,115	-62,533	-66,173	-68,068	-67,773	-67,550
1936	-67,412	-67,374	-67,488	-67,410	2	0	0	8,922	7,973	5,756	5,730	5,712
1937	5,701	5,698	5,698	5,699	0	0	0	5,622	3,306	1,108	1,104	1,100
1938	1,098	1,098	0	0	0	0	0	0	0	-2,183	-5	0
1939	0	0	0	0	0	0	5,984	3,783	1,657	1,649	1,641	1,635
1940	1,632	1,631	-368	2,411	4,704	0	0	12,026	9,689	9,647	9,605	9,574
1941	9,554	9,548	5,059	-1	0	0	0	3,897	0	-4	0	0
1942	0	0	0	-1	0	0	0	0	0	0	0	0
1943	0	0	0	0	0	0	0	475	0	-2,183	-4	0
1944	0	0	0	0	0	0	0	-11,972	-14,047	-16,170	-16,098	-16,044
1945	-16,010	-16,002	-16,002	-16,007	0	0	0	1,721	30,195	27,882	27,759	27,672
1946	27,617	106	0	0	0	0	0	5,859	3,726	3,710	3,693	3,680
1947	3,673	3,671	3,671	3,672	3,672	3,671	3,668	8,891	6,747	6,717	6,686	6,663
1948	6,648	6,645	6,645	6,917	6,919	6,916	5,118	3,209	2,456	343	409	448
1949	464	468	470	447	449	5,347	5,526	6,492	11,777	11,724	11,670	11,631
1950	11,607	11,599	4,140	11,949	-1,973	-3,538	-1,650	-796	12,760	11,317	11,266	11,228
1951	11,205	12,508	0	0	0	0	-2,116	-1,801	-3,973	-6,138	-6,109	-6,089
1952	-6,076	-6,073	-6,073	-186	0	0	0	0	0	-2,184	-5	0
1953	0	0	0	0	0	0	-2,576	-4,755	-6,854	-9,008	-8,970	-8,940
1954	-8,921	-8,916	-8,917	-8,919	-8,920	-8,917	-8,908	-7,801	-9,889	-9,847	-9,803	-9,770
1955	-9,750	-9,744	-9,745	-9,748	-9,748	-9,744	-10,970	-11,689	-2,467	-2,456	-2,444	-2,437
1956	-2,431	-2,430	0	0	0	0	0	-4,425	0	0	0	0
1957	0	0	0	0	0	0	0	-7,471	-9,561	-11,703	-11,651	-11,612
1958	-11,589	-11,582	-11,582	-11,586	-11,587	0	0	0	0	0	0	0
1959	0	0	0	0	0	0	-2,851	-5,587	-5,568	-5,543	-5,517	-5,499
1960	-5,487	-5,484	-5,485	-5,485	-1,747	-962	-590	3,800	2,402	2,391	2,380	2,371
1961	2,365	2,364	577	578	577	577	577	575	573	571	568	566
1962	565	564	565	564	565	564	564	-38,191	-44,742	-46,722	-46,503	-46,336
1963	-46,236	-46,209	-38,284	-24,977	-46,239	-46,222	-46,178	-39,770	-38,718	-40,734	-40,557	-40,424
1964	-40,342	-40,320	-40,322	-40,333	-28,562	-28,551	-30,641	-33,668	-46,421	-46,212	-45,996	-45,842
1965	-45,748	-45,722	-36,519	5	0	0	0	2,733	19,292	17,025	33	0
1966	0	0	0	0	0	0	-8,459	-10,623	-12,703	-12,646	-12,588	-12,545
1967	-12,519	-12,512	-12,513	-12,517	-12,517	0	0	0	0	0	-5	0
1968	0	0	0	0	0	0	0	-6,315	-8,407	-8,369	-8,330	-8,303
1969	-8,285	-8,280	-8,281	1	0	0	0	0	0	-2,184	-5	0
1970	0	0	0	-5	0	0	0	-4,300	-6,400	-8,556	-8,518	-8,489
1971	-8,471	-8,467	-8,467	-8,470	-8,469	0	0	-1,204	-3,314	-5,482	-5,459	-5,440
1972	-5,430	-5,427	-5,427	-5,429	-5,429	-5,427	-5,422	1,237	-882	-877	-873	-870
1973	-869	-868	-868	-868	-868	0	0	549	0	0	0	0
1974	0	0	0	-1	0	0	0	-1,901	0	-2,184	-5	0
1975	0	0	0	0	0	0	0	26,562	0	-4	0	0
1976	0	0	0	0	0	0	0	0	0	0	0	0
1977	0	0	0	0	0	0	0	0	0	0	0	0
1978	0	0	0	0	0	0	0	-18,098	0	-2,183	-2,174	-1,593
1979	6,965	6,961	6,960	-1	0	0	0	0	-2,114	-2,105	-2,096	-2,088
1980	-2,085	-2,083	-2,083	-5	0	0	0	0	0	0	0	0
1981	0	0	0	0	0	0	-2,116	-8,211	-10,299	-10,253	-10,206	-10,170
1982	-10,149	-10,143	-10,144	0	0	0	0	0	0	-2,183	-9	0
1983	0	0	0	0	0	0	0	0	0	0	-2,183	0
1984	4,784	0		0	0	0	-196	-14,019	-16,087	-18,202	-18,121	-18,061
1985	-18,022	-18,013	-18,013	-18,018	-18,020	-18,013	-17,996	-4,852	-6,951	-6,919	-6,887	-6,864
1986	-6,850	-6,846	-15,243	-18,908	0	0	0	0	0	-2,184	-2,174	-4
1987	-3	-3	-3	-4	-3	-3	-3	8,685	8,627	8,587	8,548	8,518
1988	8,501	8,497	8,496	8,499	8,499	8,496	8,488	1,102	-6,380	-6,351	-6,321	-6,298
1989	-6,284	-6,281	-6,281	-6,283	-6,284	-6,281	-17,360	-22,351	-25,032	-24,919	-24,805	-24,718
1990	-24,666	-24,652	-24,653	-24,661	-24,662	-24,653	-24,629	-14,718	-8,948	-8,908	-8,865	-8,834
1991	-14,011	-14,003	-15,236	-22,968	-24,438	-24,428	-24,420	-11,105	-23,342	-26,274	-28,497	-28,408
1992	-28,351	-28,336	-28,336	-28,346	-28,348	-28,338	-11,124	-13,430	-13,423	-13,406	-13,380	-13,354
1993	-13,339	-13,332	-21,270	-33,454	-33,472	-25,229	-27,190	-27,124	0	-5	0	0
1994					0	0	0	-3,987	-6,088	-6,060	-6,032	-6,012
1995	-6,000	-5,996	-5,996	-5,998	12,637	0	0	0	0	0	-2,184	-3
1996	-3	-3	-3	-3	0	0	0	0	0	-2,183	-2,174	-4
1997	-3	0	0	-1	0	0	-9,724	-11,886	-13,961	-16,084	-16,014	-15,961
1998	-15,929	-15,920	-15,921	3	0	0	0	0			0	0
1999	0			0	0	0	0	3,128	4,038	1,838	1,828	1,824
2000	1,819	1,819	1,818	1,819	0	0	0	7,361	0	0	0	0
2001	0	0	0	1	0	0	0	-12,907	-14,766	-14,700	-14,634	-14,584
2002	-14,553	-14,545	-14,545	-14,549	-14,550	-14,545	-14,531	-20,414	-22,460	-22,361	-22,257	-22,181
Avg (21-02)	-5,902	-6,276	-6,397	-5,823	-4,775	-4,479	-4,848	-5,008	-5,462	-6,344	-6,419	-6,284

APPENDIX O3

Figure 2.5-1 and Table 2.5-4 illustrate that during drought sequences, a reduction to inflow to Don Pedro Reservoir can accumulate from year to year. Compared to the base setting, the variant would result in lower Don Pedro Reservoir storage during drought periods. Figure 2.5-2 illustrates the difference in reservoir storage averaged by year type for the variant and WSIP settings. Also shown is the average difference in storage for the two settings during the 82-year simulation. Figure 2.5-3 shows the same information for the variant and the base settings.

Figure 2.5-2

Figure 2.5-3

Figure 2.5-4 illustrates the average monthly storage in Don Pedro Reservoir for the 82-year simulation, and the range in storage for each month for the variant and base settings.

The difference in storage in Don Pedro Reservoir attributed to the upstream effects of the variant would manifest in differences in releases from La Grange Dam to the stream. A different amount of available reservoir space in the winter and spring due to the variant would lead to a different ability to regulate inflow, thus potentially changing the amount of water released to the stream that is in excess of minimum release requirements. During periods when inflow differs and Don Pedro Reservoir is at maximum storage capacity within the flood control storage limitation, a change in inflow directly manifests as a change in releases from La Grange Dam (a change of either more or less flow). Figure 2.5-1 illustrates the stream releases from La Grange Dam for the WSIP, variant, and base settings.

APPENDIX O3

Figure 2.5-4

Table 2.5-5 illustrates the difference in stream releases between the variant and WSIP settings. Compared to the WSIP setting, the variant exhibits an incrementally larger stream release, predominately during some months of the early winter through June period, which is reflective of the months when releases to the stream are made in excess of minimum release requirements due to flood control or in anticipation of filling the reservoir. Table 2.5-6 shows the same information for the variant and WSIP settings, arranged by ranking the years in descending order of the San Joaquin River Index (an index of the wetness of the Tuolumne and San Joaquin River Basins). The table illustrates the finding that differences in releases to the Tuolumne River from La Grange Dam occur only when there are releases in excess of minimum FERC flow requirements. This circumstance typically occurs only in above-normal and wet years, and predominately during early winter through June. During other year types and during the summer and fall, releases would be maintained at minimum FERC flow requirements regardless of the setting. Compared to the WSIP setting, the large reduction in flow following an extended drought period is reduced with the variant, since the amount of water delivered by the SFPUC during these periods is less than that delivered in the WSIP setting, but is still more than delivered in the base setting.

As described above concerning Don Pedro inflow and storage, compared to the base setting the variant setting would lead to an additional draw of storage due to SFPUC diversions that are greater than in the base setting in drought periods. Although the reduction in storage would not greatly accumulate, greater replenishment of Don Pedro Reservoir storage would be needed in about 25 percent of the years in the 82-year simulation. There are occasions when an increase in releases would occur. This circumstance would result from the shift in timing of SJPL diversions due to the increased conveyance capacity. The effect would be an occasional additional release of water from Hetch Hetchy Reservoir in the winter that then manifests as an additional release from Don Pedro Reservoir. Table 2.5-7 illustrates the difference in stream releases between the variant and base settings, depicting the predominance of mostly slight reductions in flow. Table 2.5-8 illustrates the same information ranked in descending order of the San Joaquin River Index.

Table 2.5-5 and Table 2.5-7 illustrate the difference in stream releases among the variant, WSIP, and base settings, expressed in terms of a monthly volume (acre-feet) of flow. Table 2.5-9 presents the same information and the average monthly stream releases for the variant and WSIP settings, expressed in average monthly flow (cfs), and Table 2.5-10 shows the same information for the variant and base settings. For the comparison of the variant to the WSIP setting, the difference in monthly flow below La Grange Dam could range from an increase of approximately 179,000 acre-feet to a decrease of approximately 7,000 acre-feet. Considering the manner in which releases are determined and made to the stream, it is not always meaningful to quantify the effect of these changes in terms of average monthly flow (cfs). Similar to the operation of releases below O'Shaughnessy Dam, a change in the volume of release from La Grange Dam to the stream would likely delay or accelerate the initiation of the release by a matter of days. Using the assumption that a change in release volume equates to a delay or acceleration of releasing 6,000 acre-feet per day means that the difference in stream release from La Grange Dam between the variant and WSIP would be an additional day of delay in releases

Table 2.5-5
Difference in Total La Grange Release to River (Acre-feet)

Table 2.5-6
Difference in Total La Grange Release to River (Acre-feet)

Table 2.5-7

Difference in	a G	ge Rele	to Riv	(Acre-fe					2018 WSIP minus Base				
Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
1921	0	0	0	0	0	-7,939	-1,434	0	0	0	0	0	-9,373
1922	0	0	0	0	-2,800	0	-4,603	0	13,038	-2,183	-5	0	3,447
1923	0	0	0	0	0	0	-921	0	0	0	0	0	-921
1924	0	0	0	0	0	0	0	0	0	0	0	0	0
1925	0	0	0	0	0	0	0	0	0	0	0	0	0
1926	0	0	0	0	0	0	0	0	0	0	0	0	0
1927	0	0	0	0	0	0	0	0	-18,955	0	-2,174	-4	-21,133
1928	0	0	0	0	0	6,266	-1,561	0	0	0	0	0	4,705
1929	0	0	0	0	0	0	0	0	0	0	0	0	0
1930	0	0	0	0	0	0	0	0	0	0	0	0	0
1931	0	0	0	0	0	0	0	0	0	0	0	0	0
1932	0	0	0	0	0	0	0	0	0	0	0	0	0
1933	0	0	0	0	0	0	0	0	0	0	0	0	0
1934	0	0	0	0	0	0	0	0	0	0	0	0	0
1935	0	0	0	0	0	0	0	0	0	0	0	0	0
1936	0	0	0	0	-67,414	-7,845	-301	0	0	0	0	0	-75,560
1937	0	0	0	0	6,428	1,655	-1,251	0	0	0	0	0	6,832
1938	0	0	1,098	0	0	0	-1,422	7,840	-1,842	0	-2,173	-5	3,496
1939	0	0	0	0	0	0	0	0	0	0	0	0	0
1940	0	0	0	0	0	2,307	-2,839	0	0	0	0	0	-532
1941	0	0	0	5,060	1,788	2,032	2,492	0	11,823	-2,184	-5	0	21,006
1942	0	0	0	9,144	-1	0	-4,604	0	0	-2,188	0	0	2,351
1943	0	0	0	0	8,123	7,595	-5,524	0	935	0	-2,174	-5	8,950
1944	0	0	0	0	0	0	0	0	0	0	0	0	0
1945	0	0	0	0	-16,008	-15,316	2,660	0	0	0	0	0	-28,664
1946	0	27,503	106	0	0	-6,263	-626	0	0	0	0	0	20,720
1947	0	0	0	0	0	0	0	0	0	0	0	0	0
1948	0	0	0	0	0	0	0	0	0	0	0	0	0
1949	0	0	0	0	0	0	0	0	0	0	0	0	0
1950	0	0	0	0	0	0	0	0	0	0	0	0	0
1951	0	0	12,509	0	0	0	0	0	0	0	0	0	12,509
1952	0	0	0	0	-185	0	0	406	921	0	-2,174	-4	-1,036
1953	0	0	0	0	0	0	0	0	0	0	0	0	0
1954	0	0	0	0	0	0	0	0	0	0	0	0	0
1955	0	0	0	0	0	0	0	0	0	0	0	0	0
1956	0	0	-6,938	0	0	-1,576	-2,775	0	-5,339	-2,188	0	0	-18,816
1957	0	0	0	0	0	0	0	0	0	0	0	0	0
1958	0	0	0	0	0	-11,584	0	15,657	1,841	-2,188	0	0	3,726
1959	0	0	0	0	0	0	0	0	0	0	0	0	0
1960	0	0	0	0	0	0	0	0	0	0	0	0	0
1961	0	0	0	0	0	0	0	0	0	0	0	0	0
1962	0	0	0	0	0	0	0	0	0	0	0	0	0
1963	0	0	0	0	0	0	0	0	0	0	0	0	0
1964	0	0	0	0	-11,774	0	0	0	0	0	0	0	-11,774
1965	0	0	0	-36,529	4	-10,710	-1,225	0	0	0	14,767	32	-33,661
1966	0	1	6,966	0	0	0	0	0	0	0	0	0	6,967
1967	0	0	0	0	0	624	0	-827	2,762	-2,188	-2,184	-5	-1,818
1968	0	0	0	0	0	0	0	0	0	0	0	0	0
1969	0	0	0	-8,284	11,234	-1	-5,524	0	0	0	-2,174	-4	-4,753
1970	0	0	4,959	36,921	-5,959	-21,031	0	0	0	0	0	0	14,890
1971	0	0	0	0	0	-8,468	0	0	0	0	0	0	-8,468
1972	0	0	0	0	0	0	0	0	0	0	0	0	0
1973	0	0	0	0	0	-868	0	0	-372	0	0	0	-1,240
1974	0	0	3,594	5,112	-1	-3,806	-2,762	0	-3,738	0	-2,174	-5	-3,780
1975	0	0	0	0	0	0	-7,366	0	28,609	-2,183	-4	0	19,056
1976	0	0	0	0	0	0	0	0	0	0	0	0	0
1977	0	0	0	0	0	0	0	0	0	0	0	0	0
1978	0	0	0	0	0	0	0	0	-22,671	0	0	0	-22,671
1979	0	0	0	6,963	-1	-5,797	-2,118	-2,188	0		0	0	-3,141
1980	0	0	0	32,984	-7,496	2,603	-4,879	-952	-921	-2,188	0	0	19,151
1981	0	0	0	0	0	0	0	0	0	0	0	0	0
1982	0	0	0	2,398	5,591	-1	0	951	921	0	-4,357	911	6,414
1983	4,757	5,524	0	0	0	0	0	-3,896	-920	-2,188	0	-2,180	1,097
1984	0	12,147	0	0	0	3,936	0	0	0	0	0	0	16,083
1985	0	0	0	0		0	0	0	0	0	0	0	0
1986	0	0	0	0	-6,028	1,757	-1,841	-2,854	-2,762	0	0	-2,167	-13,895
1987	0	0	0	0	0	0	0	0	0	0	0	0	0
1988	0	0	0	0	0	0	0	0	0	0	0	0	0
1989	0	0	0	0	0	0	0	0	0	0	0	0	0
1990	0	0	0	0	0	0	0	0	0	0	0	0	0
1991	0	0	0	0	0	0	0	0	0	0	0	0	0
1992	0	0	0	0	0	0	0	0	0	0	0	0	0
1993	0	0	0	0	0	0	0	0	-52,475	-2,184	-5	0	-54,664
1994	0	0	0	0	0	0	0	0	0	0	0	0	0
1995	0	0	0	0	0	29,603	-1,570	0	0	-2,188	0	-2,177	23,668
1996	0	0	0	0	15,744	-7,490	-3,569	-231	-2,762	0	0	-2,167	-475
1997	0	-3	0	9,880	-1	0	0	0	0	0	0	0	9,876
1998	0	0	0	-15,925	2	15,817	-4,603	-951	-920	-2,188	0	0	-8,768
1999	0	0	0	0	0	-4,757	-6,144	0	0	0	0	0	-10,901
2000	0	0	0	0	1,819	-1	0	0	5,232	0	0	0	7,050
2001	0	0	0	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0	0	0	0
Avg (21-02)	58	551	272	582	-816	-479	-784	158	-580	-320	-59	-95	-1,513

Table 2.5-8
Difference in Total La Grange Release to River (Acre-feet)

Matrix Data for Water Year 1921-2002 Rank Ordered by Descending Unimpaired Runoff at LaGrange									2018 WSIP minus Base				
Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
1983	4,757	5,524	0	0	0	0	0	-3,896	-920	-2,188	0	-2,180	1,097
1995	0	0	0	0	0	29,603	-1,570	0	0	-2,188	0	-2,177	23,668
1969	0	0	0	-8,284	11,234	-1	-5,524	0	0	0	-2,174	-4	-4,753
1982	0	0	0	2,398	5,591	-1	0	951	921	0	-4,357	911	6,414
1938	0	0	1,098	0	0	0	-1,422	7,840	-1,842	0	-2,173	-5	3,496
1998	0	0	0	-15,925	2	15,817	-4,603	-951	-920	-2,188	0	0	-8,768
1997	0	-3	0	9,880	-1	0	0	0	0	0	0	0	9,876
1956	0	0	-6,938	0	0	-1,576	-2,775	0	-5,339	-2,188	0	0	-18,816
1967	0	0	0	0	0	624	0	-827	2,762	-2,188	-2,184	-5	-1,818
1980	0	0	0	32,984	-7,496	2,603	-4,879	-952	-921	-2,188	0	0	19,151
1986	0	0	0	0	-6,028	1,757	-1,841	-2,854	-2,762	0	0	-2,167	-13,895
1952	0	0	0	0	-185	0	0	406	921	0	-2,174	-4	-1,036
1978	0	0	0	0	0	0	0	0	-22,671	0	0	0	-22,671
1965	0	0	0	-36,529	4	-10,710	-1,225	0	0	0	14,767	32	-33,661
1958	0	0	0	0	0	-11,584	0	15,657	1,841	-2,188	0	0	3,726
1993	0	0	0	0	0	0	0	0	-52,475	-2,184	-5	0	-54,664
1941	0	0	0	5,060	1,788	2,032	2,492	0	11,823	-2,184	-5	0	21,006
1951	0	0	12,509	0	0	0	0	0	0	0	0	0	12,509
1922	0	0	0	0	-2,800	0	-4,603	0	13,038	-2,183	-5	0	3,447
1984	0	12,147	0	0	0	3,936	0	0	0	0	0	0	16,083
1943	0	0	0	0	8,123	7,595	-5,524	0	935	0	-2,174	-5	8,950
1942	0	0	0	9,144	-1	0	-4,604	0	0	-2,188	0	0	2,351
1996	0	0	0	0	15,744	-7,490	-3,569	-231	-2,762	0	0	-2,167	-475
1974	0	0	3,594	5,112	-1	-3,806	-2,762	0	-3,738	0	-2,174	-5	-3,780
1940	0	0	0	0	0	2,307	-2,839	0	0	0	0	0	-532
1936	0	0	0	0	-67,414	-7,845	-301	0	0	0	0	0	-75,560
1932	0	0	0	0	0	0	0	0	0	0	0	0	0
1935	0	0	0	0	0	0	0	0	0	0	0	0	0
1999	0	0	0	0	0	-4,757	-6,144	0	0	0	0	0	-10,901
1945	0	0	0	0	-16,008	-15,316	2,660	0	0	0	0	0	-28,664
1927	0	0	0	0	0	0	0	0	-18,955	0	-2,174	-4	-21,133
1963	0	0	0	0	0	0	0	0	0	0	0	0	0
1975	0	0	0	0	0	0	-7,366	0	28,609	-2,183	-4	0	19,056
1973	0	0	0	0	0	-868	0	0	-372	0	0	0	-1,240
1921	0	0	0	0	0	-7,939	-1,434	0	0	0	0	0	-9,373
1937	0	0	0	0	6,428	1,655	-1,251	0	0	0	0	0	6,832
1970	0	0	4,959	36,921	-5,959	-21,031	0	0	0	0	0	0	14,890
2000	0	0	0	0	1,819	-1	0	0	5,232	0	0	0	7,050
1925	0	0	0	0	0	0	0	0	0	0	0	0	0
1979	0	0	0	6,963	-1	-5,797	-2,118	-2,188	0	0	0	0	-3,141
1946	0	27,503	106	0	0	-6,263	-626	0	0	0	0	0	20,720
1923	0	0	0	0	0	0	-921	0	0	0	0	0	-921
1962	0	0	0	0	0	0	0	0	0	0	0	0	0
1971	0	0	0	0	0	-8,468	0	0	0	0	0	0	-8,468
1950	0	0	0	0	0	0	0	0	0	0	0	0	0
1953	0	0	0	0	0	0	0	0	0	0	0	0	0
1928	0	0	0	0	0	6,266	-1,561	0	0	0	0	0	4,705
1954	0	0	0	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0	0	0	0
1957	0	0	0	0	0	0	0	0	0	0	0	0	0
1948	0	0	0	0	0	0	0	0	0	0	0	0	0
1989	0	0	0	0	0	0	0	0	0	0	0	0	0
1966	0	1	6,966	0	0	0	0	0	0	0	0	0	6,967
1944	0	0	0	0	0	0	0	0	0	0	0	0	0
1949	0	0	0	0	0	0	0	0	0	0	0	0	0
1985	0	0	0	0	0	0	0	0	0	0	0	0	0
1972	0	0	0	0	0	0	0	0	0	0	0	0	0
1930	0	0	0	0	0	0	0	0	0	0	0	0	0
1964	0	0	0	0	-11,774	0	0	0	0	0	0	0	-11,774
1955	0	0	0	0	0	0	0	0	0	0	0	0	0
1926	0	0	0	0	0	0	0	0	0	0	0	0	0
1933	0	0	0	0	0	0	0	0	0	0	0	0	0
1991	0	0	0	0	0	0	0	0	0	0	0	0	0
2001	0	0	0	0	0	0	0	0	0	0	0	0	0
1947	0	0	0	0	0	0	0	0	0	0	0	0	0
1960	0	0	0	0	0	0	0	0	0	0	0	0	0
1981	0	0	0	0	0	0	0	0	0	0	0	0	0
1968	0	0	0	0	0	0	0	0	0	0	0	0	0
1959	0	0	0	0	0	0	0	0	0	0	0	0	0
1939	0	0	0	0	0	0	0	0	0	0	0	0	0
1929	0	0	0	0	0	0	0	0	0	0	0	0	0
1990	0	0	0	0	0	0	0	0	0	0	0	0	0
1992	0	0	0	0	0	0	0	0	0	0	0	0	0
1994	0	0	0	0	0	0	0	0	0	0	0	0	0
1988	0	0	0	0	0	0	0	0	0	0	0	0	0
1934	0	0	0	0	0	0	0	0	0	0	0	0	0
1961	0	0	0	0	0	0	0	0	0	0	0	0	0
1976	0	0	0	0	0	0	0	0	0	0	0	0	0
1987	0	0	0	0	0	0	0	0	0	0	0	0	0
1931	0	0	0	0	0	0	0	0	0	0	0	0	0
1924	0	0	0	0	0	0	0	0	0	0	0	0	0
1977	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 2.5-9

Total La Grange Release to River (Acre-feet)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	23,264	21,635	56,327	150,325	184,968	276,250	214,153	243,710	227,036	142,651	66,645	45,515	1,652,480
Above Normal	18,683	30,882	67,212	75,648	127,296	167,481	128,473	78,842	84,574	27,869	19,798	18,215	844,972
Normal	18,264	17,249	35,981	51,832	74,090	104,453	84,424	77,929	20,660	9,992	9,992	9,670	514,534
Below Normal	17,105	13,768	20,372	15,874	17,613	21,364	34,828	33,554	4,025	4,160	4,160	4,025	190,847
Dry	17,240	13,842	14,866	13,950	15,511	20,672	21,732	21,240	3,347	3,459	3,459	3,347	152,665
All Years	18,886	19,545	39,070	61,141	83,616	117,468	96,354	90,205	67,352	37,099	20,595	16,032	667,363
Total La Grange Release to River (Acre-feet)													
(Average within	Type - Gr	by Uni	ired Run	taGran								WSIP	
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	22,901	21,463	53,092	132,916	181,173	266,954	211,640	237,532	215,975	138,831	65,042	45,019	1,592,538
Above Normal	18,683	30,258	59,409	73,887	113,696	163,096	126,954	78,391	79,235	27,869	19,400	17,441	808,318
Normal	18,264	14,720	33,517	50,334	70,441	101,554	83,097	77,929	15,802	9,992	9,992	9,670	495,309
Below Normal	17,105	13,768	19,894	15,874	16,603	21,364	34,828	33,554	4,025	4,160	4,160	4,025	189,359
Dry	17,240	13,842	14,866	13,950	15,511	20,672	21,732	21,240	3,347	3,459	3,459	3,347	152,665
All Years	18,815	18,888	36,241	57,087	79,135	114,179	95,290	88,906	63,139	36,354	20,200	15,774	644,009
Difference in Total La Grange Release to River (Acre-feet)													
(Average within	Type - Gr	ed by Uni	ired Run	LaGran							8 WSIP	s WSIP	
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	363	173	3,236	17,409	3,795	9,297	2,513	6,178	11,062	3,819	1,603	496	59,943
Above Normal	0	624	7,803	1,761	13,600	4,385	1,520	451	5,339	0	398	774	36,654
Normal	0	2,529	2,464	1,499	3,649	2,899	1,327	0	4,858	0	0	0	19,225
Below Normal	0	0	478	0	1,010	0	0	0	0	0	0	0	1,487
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	71	657	2,829	4,054	4,481	3,289	1,064	1,299	4,213	745	395	257	23,355

Table 2.5-10

Total La Grange Release to River (Acre-feet)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	23,264	21,635	56,327	150,325	184,968	276,250	214,153	243,710	227,036	142,651	66,645	45,515	1,652,480
Above Normal	18,683	30,882	67,212	75,648	127,296	167,481	128,473	78,842	84,574	27,869	19,798	18,215	844,972
Normal	18,264	17,249	35,981	51,832	74,090	104,453	84,424	77,929	20,660	9,992	9,992	9,670	514,534
Below Normal	17,105	13,768	20,372	15,874	17,613	21,364	34,828	33,554	4,025	4,160	4,160	4,025	190,847
Dry	17,240	13,842	14,866	13,950	15,511	20,672	21,732	21,240	3,347	3,459	3,459	3,347	152,665
All Years	18,886	19,545	39,070	61,141	83,616	117,468	96,354	90,205	67,352	37,099	20,595	16,032	667,363
Total La Grange Release to River (Acre-feet)													
(Average within	Type - G	ed by Uni	ired Runo	at LaGrang								Base	
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	22,967	21,290	56,692	151,293	184,772	274,592	215,643	242,749	232,124	143,744	66,539	45,865	1,658,271
Above Normal	18,683	30,167	66,265	74,511	130,859	168,855	130,389	78,856	82,871	28,383	20,182	18,343	848,363
Normal	18,264	15,530	35,664	49,090	73,947	107,106	84,918	78,066	20,356	9,992	9,992	9,670	512,593
Below Normal	17,105	13,768	19,962	15,874	18,305	21,364	34,828	33,554	4,025	4,160	4,160	4,025	191,130
Dry	17,240	13,842	14,866	13,950	15,511	20,672	21,732	21,240	3,347	3,459	3,459	3,347	152,665
All Years	18,828	18,994	38,798	60,559	84,433	117,947	97,139	90,047	67,933	37,419	20,654	16,126	668,876
Difference in Total La Grange Release to River (Acre-feet)													
(Average within	Type - G	ed by Uni	ired Runo	at LaGrang							18 WSIP	us Base	
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	297	345	-365	-967	195	1,658	-1,490	961	-5,088	-1,094	106	-350	-5,791
Above Normal	0	715	947	1,136	-3,563	-1,373	-1,915	-14	1,703	-514	-384	-128	-3,391
Normal	0	1,719	317	2,743	143	-2,653	-494	-137	304	0	0	0	1,941
Below Normal	0	0	410	0	-693	0	0	0	0	0	0	0	-283
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	58	551	272	582	-816	-479	-784	158	-580	-320	-59	-95	-1,513

or up to almost an added month of release. Normally, a change in release would not affect the peak stream release rate during a year. However, infrequently (a rare event following a prolonged drought), the variant's effect on stream releases could manifest as an elimination of all flow during a year or as the only provision of flow that occurs in excess of minimum FERC flow requirements. Compared to the base setting, the variant's effect on stream flow ranges from a reduction in releases (a potential delay in release of 11 days) to an increase in releases (a potential additional 5 days of release).

2.6 Calaveras and San Antonio Reservoirs, Alameda Creek, and Downstream

Compared to the WSIP setting, the operation of Calaveras Reservoir in the variant setting is almost identical. Figure 2.6-1 illustrates a chronological trace of the simulation of Calaveras Reservoir storage and stream releases from Calaveras Dam. Shown in Figure 2.6-1 are the results for the WSIP, variant, and base settings. In recognition of the different levels of systemwide deliveries served in each setting, the near identical operation of Calaveras Reservoir resulting from the two settings is an indication that Calaveras Reservoir operations are mostly influenced by the principles that manage local watershed production. The differences in reservoir operation during droughts are the result of modeling assumptions that balance reservoir storage among SFPUC reservoirs and the selection of the monthly SJPL conveyance rate. It is anticipated that the difference in Calaveras Reservoir operation during actual operations would be minimal, if any difference occurred at all.

Figure 2.6-1

Calaveras Reservoir Storage and Stream Release

APPENDIX O3

The difference in storage between the variant and WSIP settings and the base setting is due to the restoration of the operational capacity of Calaveras Reservoir. Under both the variant and WSIP settings the full capacity of Calaveras Reservoir would be available, and a greater range in storage operation would occur. Figure 2.6-2 illustrates the average monthly storage in Calaveras Reservoir for the 82-year simulation, and the range in storage for each month for the variant and base settings.

Figure 2.6-2

Compared to the WSIP setting, there would be the potential for either less or more release to Calaveras Creek below Calaveras Dam in the variant setting. Both settings require fishery releases below Calaveras Reservoir that are not included in the base setting. Calaveras Reservoir storage in the variant setting is sometimes more or sometimes less than in the WSIP setting; however, in either direction the difference is minor. Table 2.6-1 illustrates the difference in releases to Calaveras Creek between the variant and WSIP settings (considered insubstantial). Supplementing the Figure 2.6-1 representation of Calaveras Dam stream releases and Table 2.6-1 is Table 2.6-2, which illustrates the releases for the variant and WSIP settings, and the difference in releases between the two. Table 2.6-3 provides the same form of information for the variant and base settings. The notable difference in releases between the variant and base settings is the addition of the required flows to satisfy the 1997 CDFG MOU and the reduction of stream releases during wetter-year, wetter-season flows due to the restoration of Calaveras Reservoir operational capacity.

There would be very little, if any, difference in Alameda Creek diversions to Calaveras Reservoir in the variant setting compared to the WSIP setting. With essentially the same storage conditions between the two settings, there would be no difference in diversions from the Alameda Creek watershed. With no difference in diversions at Alameda Creek Diversion Dam (ACDD), flow spilling past the diversion dam would be the same in the variant setting. Table 2.6-4 illustrates the difference in flow below the ACDD between the variant and WSIP settings (considered insubstantial).

Table 2.6-5 illustrates the difference in flow below the ACDD between the variant and base settings. In this comparison, the reduction in flow below the diversion dam is due to the additional diversions to Calaveras Reservoir resulting from the restoration of reservoir operating capacity. Table 2.6-6 and Table 2.6-7 illustrate the flow past the ACDD, comparing the variant, WSIP, and base settings by year type and the average of all years.

APPENDIX O3

Table 2.6-1
Difference in Total Stream Release from Calaveras Reservoir (Acre-feet)

APPENDIX O3

Table 2.6-2

Total Stream Release from Calaveras Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)					Feb	Mar	Apr	May	Jun	Jul	2018 WSIP		WY Total
	Oct	Nov	Dec	Jan							Aug	Sep	
Wet	429	246	1,063	5,067	14,701	9,862	5,082	255	386	417	425	415	38,348
Above Normal	425	258	172	825	3,440	2,773	606	327	396	424	428	417	10,490
Normal	429	275	194	548	725	543	265	370	408	428	430	417	5,031
Below Normal	428	275	246	672	876	596	345	389	411	430	430	417	5,515
Dry	429	292	281	778	1,044	747	375	407	416	430	430	417	6,044
All Years	428	269	387	1,558	4,108	2,874	1,314	350	403	426	428	417	12,962
Total Stream Release from Calaveras Reservoir (Acre-feet)													
(Average within Year Type - Grouped by 5 Local Reservoir Runoff)												WSIP	
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	429	246	998	4,985	14,425	9,862	5,085	255	386	417	425	415	37,928
Above Normal	425	258	172	746	3,196	2,688	606	327	396	424	428	417	10,082
Normal	429	275	194	548	725	506	265	370	408	428	430	417	4,995
Below Normal	428	275	246	672	876	596	345	389	411	430	430	417	5,515
Dry	429	292	281	778	1,044	747	375	407	416	430	430	417	6,044
All Years	428	269	374	1,526	4,004	2,850	1,314	350	403	426	428	417	12,788
Difference in Total Stream Release from Calaveras Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)									2018 WSIP minus WSIP				
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	65	82	276	0	-3	0	0	0	0	0	419
Above Normal	0	0	0	79	244	85	0	0	0	0	0	0	408
Normal	0	0	0	0	0	36	0	0	0	0	0	0	36
Below Normal	0	0	0	0	0	0	0	0	0	0	0	0	0
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	13	32	104	25	-1	0	0	0	0	0	173

Table 2.6-3

APPENDIX O3

Table 2.6-4
Difference in Flow Passing Alameda Creek Diversion Dam (Acre-feet)

APPENDIX O3

Table 2.6-5

Table 2.6-6

Flow Passing Alameda Creek Diversion Dam (Acre-feet)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	28	1,379	6,282	7,982	5,727	2,960	173	0	0	0	0	24,531
Above Normal	7	23	843	2,281	3,740	3,237	959	0	0	0	0	0	11,091
Normal	0	6	585	260	824	459	113	0	0	0	0	0	2,247
Below Normal	0	0	18	45	102	229	0	0	0	0	0	0	394
Dry	0	0	0	0	57	0		0	0	0	0	0	58
All Years	1	12	562	1,759	2,526	1,926	798	34	0	0	0	0	7,617
Flow Passing Alameda Creek Diversion Dam (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
		Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	28	1,379	6,269	7,982	5,727	2,960	173	0	0	0	0	24,518
Above Normal	7	23	591	2,457	3,735	3,129	959	0	0	0	0	0	10,903
Normal	0	6	585	260	796	459	113	0	0	0	0	0	2,219
Below Normal	0	0	18	45	102	229	0	0	0	0	0	0	394
Dry	0	0	0	0	57	0	0	0	0	0	0	0	58
All Years	1	12	509	1,793	2,520	1,903	798	34	0	0	0	0	7,570
Difference in Flow Passing Alameda Creek Diversion Dam (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff) 2018 WSIP minus WSIP													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	0	13	0	0	0	0	0	0	0	0	13
Above Normal	0	0	252	-177	5	108	0	0	0	0	0	0	188
Normal	0	0	0	0	28	0	0	0	0	0	0	0	28
Below Normal	0	0	0	0	0	0	0	0	0	0	0	0	0
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	52	-34	6	22	0	0	0	0	0	0	47

Table 2.6-7

Flow Passing Alameda Creek Diversion Dam (Acre-feet)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	28	1,379	6,282	7,982	5,727	2,960	173	0	0	0	0	24,531
Above Normal	7	23	843	2,281	3,740	3,237	959	0	0	0	0	0	11,091
Normal	0	6	585	260	824	459	113	0	0	0	0	0	2,247
Below Normal	0	0	18	45	102	229	0	0	0	0	0	0	394
Dry	0	0	0	0	57	0	0	0	0	0	0	0	58
All Years	1	12	562	1,759	2,526	1,926	798	34	0	0	0	0	7,617
Flow Passing Alameda Creek Diversion Dam (Acre-feet)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	28	1,379	6,967	8,099	5,757	2,972	130	0	0	0	0	25,331
Above Normal	7	23	1,126	3,672	5,294	3,096	692	0	0	0	0	0	13,911
Normal	0	6	954	868	1,870	906	126	0	0	0	0	0	4,731
Below Normal	0	0	18	45	102	229	0	0	0	0	0	0	394
Dry	0	0	0	0	57	0	0	0	0	0	0	0	58
All Years	1	12	692	2,299	3,075	1,989	748	26	0	0	0	0	8,843
Difference in Flow Passing Alameda Creek Diversion Dam (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	0	-685	-117	-30	-12	43	0	0	0	0	-801
Above Normal	0	0	-283	-1,391	-1,554	141	267	0	0	0	0	0	-2,820
Normal	0	0	-369	-608	-1,046	-447	-13	0	0	0	0	0	-2,483
Below Normal	0	0	0	0	0	0	0	0	0	0	0	0	0
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	-131	-541	-549	-64	50	8	0	0	0	0	-1,225

Comparing the variant and WSIP settings, differences in releases from Calaveras Dam to the stream and differences to spills at the ACDD result in differences in flow below the Alameda Creek and Calaveras Creek confluence between the settings. Table 2.6-8 illustrates the flow below the confluence for the variant and WSIP settings. The modeled differences in these parameters were described above as insubstantial, and thus the combined effect of the differences at the confluence would also be insubstantial. Fishery releases for the 1997 MOU are assumed in both of the settings. Table 2.6-9 provides the same form of information for the variant and base settings. The notable differences between the variant and base settings (comparable to the differences between the WSIP and base settings) are the addition of required stream flows for the 1997 MOU and the reduction of wetter-year, wet-season flows due to the restoration of Calaveras Reservoir storage.

Table 2.6-8

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	430	326	2,786	12,358	23,871	16,574	8,643	605	417	429	429	417	67,286
Above Normal	437	326	1,259	3,703	7,956	6,572	1,876	430	418	430	429	417	24,255
Normal	429	304	1,006	1,077	1,935	1,329	536	430	417	429	430	417	8,739
Below Normal	429	297	324	859	1,214	1,046	417	430	417	430	430	417	6,709
Dry	429	298	307	813	1,168	816	418	430	417	430	430	417	6,373
All Years	431	310	1,128	3,726	7,164	5,232	2,348	464	417	430	429	417	22,497
Flow below Alameda/Calaveras Creek Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	430	326	2,721	12,263	23,595	16,575	8,647	605	417	429	429	417	66,854
Above Normal	437	326	1,007	3,801	7,708	6,379	1,876	430	418	430	429	417	23,658
Normal	429	304	1,006	1,077	1,907	1,293	536	430	417	429	430	417	8,675
Below Normal	429	297	324	859	1,214	1,046	417	430	417	430	430	417	6,709
Dry	429	298	307	813	1,168	816	418	430	417	430	430	417	6,373
All Years	431	310	1,063	3,728	7,053	5,185	2,349	464	417	430	429	417	22,276
Difference in Flow below Alameda/Calaveras Creek Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff) 2018 WSIP minus WSIP													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	65	95	276	0	-3	0	0	0	0	0	432
Above Normal	0	0	252	-98	248	194	0	0	0	0	0	0	596
Normal	0	0	0	0	28	36	0	0	0	0	0	0	64
Below Normal	0	0	0	0	0	0	0	0	0	0	0	0	0
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	65	-2	111	47	-1	0	0	0	0	0	220

Table 2.6-9

Flow below Alameda/Calaveras Creek Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)					Feb	Mar	Apr	May	Jun	Jul	2018 WSIP		
	Oct	Nov	Dec	Jan							Aug	Sep	WY Total
Wet	430	326	2,786	12,358	23,871	16,574	8,643	605	417	429	429	417	67,286
Above Normal	437	326	1,259	3,703	7,956	6,572	1,876	430	418	430	429	417	24,255
Normal	429	304	1,006	1,077	1,935	1,329	536	430	417	429	430	417	8,739
Below Normal	429	297	324	859	1,214	1,046	417	430	417	430	430	417	6,709
Dry	429	298	307	813	1,168	816	418	430	417	430	430	417	6,373
All Years	431	310	1,128	3,726	7,164	5,232	2,348	464	417	430	429	417	22,497
Flow below Alameda/Calaveras Creek Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct			Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	1	80	3,465	17,243	25,909	16,711	8,598	307	30	12	4	2	72,361
Above Normal	12	68	1,554	6,954	11,987	6,754	1,462	103	22	6	2	1	28,926
Normal	1	29	1,397	1,501	3,154	1,586	284	60	9	2	0	0	8,022
Below Normal	1	22	78	186	338	450	72	41	7	0	0	0	1,195
Dry	1	6	26	35	124	69	43	23	1	0	0	0	328
All Years	3	41	1,292	5,145	8,250	5,077	2,060	106	14	4	1	1	21,993
Difference in Flow below Alameda/Calaveras Creek Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	429	246	-678	-4,885	-2,038	-136	46	298	386	417	425	415	-5,075
Above Normal	425	258	-295	-3,251	-4,031	-182	414	327	396	424	428	417	-4,671
Normal	429	275	-391	-424	-1,219	-257	251	370	408	428	430	417	717
Below Normal	428	275	246	672	876	596	345	389	411	430	430	417	5,515
Dry	429	292	281	778	1,044	747	375	407	416	430	430	417	6,044
All Years	428	269	-164	-1,419	-1,086	155	288	358	403	426	428	417	504

A flow recapture facility in Alameda Creek below Calaveras Reservoir is incorporated in the variant and WSIP settings. This facility is assumed to recapture flows explicitly released from Calaveras Dam for the 1997 MOU. The effect of the recapture would be a reduction in the flow below the confluence of Alameda and Calaveras Creeks, but only to the extent that releases were explicitly made from Calaveras Reservoir for the 1997 MOU. Flows below this diversion have been estimated and noted as the flow above the Alameda Creek and San Antonio Creek confluence. Table 2.6-10 illustrates the flow at this location for the variant and WSIP settings. The flow changes at this location are consistent with the changes noted for below the confluence of Alameda and Calaveras Creeks. These flow changes are considered insubstantial. Table 2.6-11 provides the same form of information for the variant and base settings. The flows identified at this location are indicative of flow occurring below the confluence of Alameda and Calaveras Creeks (described above) with the addition of estimated stream accretions between the Alameda and Calaveras Creek confluence and the Alameda and San Antonio Creek confluence, less the water assumed to be recaptured (diverted) by the SFPUC from the creek.

Table 2.6-10

Alameda Creek Flow abv San Antonio Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)					Feb	Mar	Apr	May	Jun	Jul	2018 WSIP		WY Total							
	Oct	Nov	Dec	Jan							Aug	Sep								
Wet	6	154	3,178	13,705	25,474	17,719	9,294	556	76	33	15	9	70,220							
Above Normal	19	150	1,455	4,230	8,670	7,073	2,127	217	54	20	9	6	24,031							
Normal	7	64	1,131	909	1,768	1,255	466	128	28	9	4	3	5,770							
Below Normal	7	56	183	404	678	717	154	91	20	5	3	2	2,321							
Dry	6	19	70	98	231	145	91	48	9	3	2	2	724							
All Years	9	89	1,194	3,831	7,299	5,346	2,395	207	38	14	7	4	20,432							
Alameda Creek Flow abv San Antonio Confluence (Acre-feet)																				
(Average within	e-G	by 5	Reservoir	noff)								VSIP								
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total							
Wet	6	154	3,113	13,610	25,199	17,720	9,297	556	76	33	15	9	69,788							
Above Normal	19	150	1,203	4,350	8,422	6,871	2,127	217	54	20	9	6	23,450							
Normal	7	64	1,131	909	1,740	1,219	466	128	28	9	4	3	5,706							
Below Normal	7	56	183	404	678	717	154	91	20	5	3	2	2,321							
Dry	6	19	70	98	231	145	91	48	9	3	2	2	724							
All Years	9	89	1,129	3,838	7,188	5,297	2,396	207	38	14	7	4	20,215							
Difference in Alameda Creek Flow abv San Antonio Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)																				
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total							
Wet	0	0	65	95	276	0	-3	0	0	0	0	0	432							
Above Normal	0	0	252	-120	248	201	0	0	0	0	0	0	581							
Normal	0	0	0	0	28	36	0	0	0	0	0	0	64							
Below Normal	0	0	0	0	0	0	0	0	0	0	0	0	0							
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0							
All Years	0	0	65	-7	111	49	-1	0	0	0	0	0	217							

Table 2.6-11

Alameda Creek Flow abv San Antonio Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)					Feb	Mar	Apr	May	Jun	Jul	2018 WSIP		WY Total
	Oct	Nov	Dec	Jan							Aug	Sep	
Wet	6	154	3,178	13,705	25,474	17,719	9,294	556	76	33	15	9	70,220
Above Normal	19	150	1,455	4,230	8,670	7,073	2,127	217	54	20	9	6	24,031
Normal	7	64	1,131	909	1,768	1,255	466	128	28	9	4	3	5,770
Below Normal	7	56	183	404	678	717	154	91	20	5	3	2	2,321
Dry	6	19	70	98	231	145	91	48	9	3	2	2	724
All Years	9	89	1,194	3,831	7,299	5,346	2,395	207	38	14	7	4	20,432
Alameda Creek Flow abv San Antonio Confluence (Acre-feet)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	6	154	3,973	18,714	27,673	17,977	9,358	513	76	33	15	9	78,502
Above Normal	19	150	1,922	7,772	13,068	7,467	1,861	217	54	20	9	6	32,566
Normal	7	64	1,716	1,881	3,712	2,007	479	128	28	9	4	3	10,037
Below Normal	7	56	183	404	678	717	154	91	20	5	3	2	2,321
Dry	6	19	70	98	231	145	91	48	9	3	2	2	724
All Years	9	89	1,560	5,733	9,019	5,624	2,355	198	38	14	7	4	24,650
Difference in Alameda Creek Flow abv San Antonio Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff) 2018 WSIP minus Base													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	-795	-5,009	-2,198	-258	-64	43	0	0	0	0	-8,282
Above Normal	0	0	-467	-3,542	-4,397	-394	266	0	0	0	0	0	-8,535
Normal	0	0	-585	-972	-1,944	-752	-13	0	0	0	0	0	-4,267
Below Normal	0	0	0	0	0	0	0	0	0	0	0	0	0
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	-366	-1,901	-1,720	-279	40	8	0	0	0	0	-4,218

Compared to the WSIP setting, the variant's San Antonio Reservoir operation would typically draw less from storage on an annual basis, particularly during cyclic maintenance. Figure 2.6-3 illustrates a chronological trace of the simulation of San Antonio Reservoir storage and stream releases from San Antonio Dam. Shown in Figure 2.6-3 are the results for the WSIP, variant, and base settings. The difference in San Antonio Reservoir storage between the variant and WSIP settings is mostly caused by the lesser demand of the variant. Considering that Calaveras Reservoir storage is essentially the same between the settings, the difference in San Antonio Reservoir storage is indicative of the operational strategy to affect storage in San Antonio Reservoir more than storage in the other SFPUC Bay Area reservoirs. San Antonio Reservoir would retain more storage in the variant setting compared to the WSIP setting.

The difference in storage between the variant and WSIP settings and the base setting is due to the restoration of the operational capacity of Calaveras Reservoir. In the base setting, the limited operating storage capacity at Calaveras Reservoir leads to a different operation at San Antonio Reservoir, one that retains relatively more stored water for system demands when the draw from Calaveras Reservoir is constrained due to limited storage. There is also a notable difference in storage operation between the variant and WSIP settings and the base setting due to assumed maintenance. Assumed systematic maintenance of Hetch Hetchy conveyance facilities constrains diversions to the Bay Area from Hetch Hetchy every year, and particularly during every fifth year in the WSIP and variant settings.

Figure 2.6-3
San Antonio Reservoir Storage and Stream Release

APPENDIX O3

The reduction in diversion from Hetch Hetchy during these periods is accommodated in the system by drawing additional water from the Bay Area reservoirs. The proportionate share of this operation that is directed toward San Antonio Reservoir is evident in the tracing of San Antonio Reservoir storage for the variant and WSIP settings. Figure 2.6-4 illustrates the average monthly storage in San Antonio Reservoir for the 82-year simulation, and the range in storage for each month for the variant and base settings. Compared to the base setting, the variant would draw less storage from San Antonio Reservoir, typically retaining a fuller reservoir except during the cyclic maintenance period November through January.

Figure 2.6-4

There is very little anticipated change in stream releases below San Antonio Reservoir between the variant and WSIP settings. Table 2.6-12 illustrates the modeled releases to San Antonio Creek from San Antonio Reservoir for the two settings and the differences for the average release during a year type. With a different reservoir operation at times during the winter, as seen in Figure 2.6-4, it is expected that there would be a difference in the ability to regulate reservoir inflow and avoid stream releases. Given the sometimes rigid constraints within the modeling assumptions, the model will overestimate the frequency and magnitude of stream releases from San Antonio Reservoir under any of the investigated settings. The flexibility that occurs in actual operations would likely avoid most of the releases represented by the model. The modeled stream releases from San Antonio Reservoir and the difference between releases for the variant and base setting are shown in Table 2.6-13. The differences between the two settings reflect a slight decrease in modeled releases. This modeled circumstance reflects the different resulting storage operation between the two settings, as seen in Figure 2.6-3. In most instances, the variant setting storage at San Antonio Reservoir during a period would be lower than that projected for the base setting during the same period. This circumstance could lead to an occasionally lesser modeled release for the variant setting, which is reflected in the results. As described above, the model will overestimate the frequency and magnitude of releases from San Antonio Reservoir, and the actual releases from the reservoir in any setting and the difference between settings are expected to be minor.

Flow below the confluence of Alameda and San Antonio Creeks is influenced by releases from San Antonio Creek and flow arriving at the location from Alameda Creek, which includes upstream impairment by SFPUC operations and facilities. Table 2.6-14 illustrates the flow below the confluence for the variant and WSIP settings, and the differences in flow between the two. The differences in flow between the variant and WSIP settings at this location are the net sum of the differences identified for flow reaching the location from Alameda Creek and from San Antonio Creek. The difference in flow from upstream in Alameda Creek was previously identified as insubstantial. Along with the conclusion that flow differences in San Antonio Creek would not be substantial, modeled differences below the confluence are also considered insubstantial.

APPENDIX O3

Table 2.6-12

Total Stream Release from San Antonio Reservoir (Acre-feet)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	404	2,195	3,512	2,817	1,171	88	0	0	0	0	10,187
Above Normal	0	0	107	673	1,818	888	197	62	0	0	0	0	3,745
Normal	0	0	251	368	133	90	90	11	0	0	0	0	943
Below Normal	0	0	0	0	16	4	0	0	0	0	0	0	19
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	150	640	1,091	752	287	32	0	0	0	0	2,952
Total Stream Release from San Antonio Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	44	1,208	3,251	1,558	658	151	0	0	0	0	6,870
Above Normal	0	0	0	442	1,381	158	192	62	0	0	0	0	2,235
Normal	0	0	11	287	78	6	13	0	0	0	0	0	395
Below Normal	0	0	0	0	0	0	4	0	0	0	0	0	4
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	11	383	936	338	172	42	0	0	0	0	1,882
Difference in Total Stream Release from San Antonio Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff) 2018 WSIP minus WSIP													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	360	987	261	1,259	513	-63	0	0	0	0	3,317
Above Normal	0	0	107	231	437	731	4	0	0	0	0	0	1,510
Normal	0	0	240	81	55	84	78	11	0	0	0	0	548
Below Normal	0	0	0	0	16	4	-4	0	0	0	0	0	15
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	139	256	155	414	115	-10	0	0	0	0	1,070

Table 2.6-13

Total Stream Release from San Antonio Reservoir (Acre-feet)(Average within Year Type - Grouped by 5 Local Reservoir Runoff)2018 WSIP													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	404	2,195	3,512	2,817	1,171	88	0	0	0	0	10,187
Above Normal	0	0	107	673	1,818	888	197	62	0	0	0	0	3,745
Normal	0	0	251	368	133	90	90	11	0	0	0	0	943
Below Normal	0	0	0	0	16	4	0	0	0	0	0	0	19
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	150	640	1,091	752	287	32	0	0	0	0	2,952
Total Stream Release from San Antonio Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	101	1,322	3,669	3,288	1,398	94	0	0	0	0	9,872
Above Normal	0	0	26	687	1,909	1,487	116	58	0	0	0	0	4,283
Normal	0	0	7	370	441	237	65	0	0	0	0	0	1,120
Below Normal	0	0	0	0	41	0	0	0	0	0	0	0	41
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	26	472	1,206	996	309	30	0	0	0	0	3,041
Difference in Total Stream Release from San Antonio Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff) 2018 WSIP minus Base													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	303	873	-157	-471	-227	-6	0	0	0	0	315
Above Normal	0	0	81	-14	-91	-599	81	4	0	0	0	0	-538
Normal	0	0	244	-1	-309	-147	26	11	0	0	0	0	-177
Below Normal	0	0	0	0	-26	4	0	0	0	0	0	0	-22
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	124	167	-115	-244	-23	2	0	0	0	0	-89

Table 2.6-14

Flow blw San Antonio and Alameda Creek Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	6	154	3,582	15,900	28,986	20,536	10,465	644	76	33	15	9	80,407
Above Normal	19	150	1,562	4,903	10,488	7,961	2,324	280	54	20	9	6	27,776
Normal	7	64	1,382	1,278	1,901	1,345	556	139	28	9	4	3	6,713
Below Normal	7	56	183	404	694	720	154	91	20	5	3	2	2,340
Dry	6	19	70	98	231	145	91	48	9	3	2	2	724
All Years	9	89	1,344	4,471	8,390	6,098	2,682	239	38	14	7	4	23,384
Flow blw San Antonio and Alameda Creek Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	6	154	3,157	14,818	28,449	19,278	9,955	707	76	33	15	9	76,658
Above Normal	19	150	1,203	4,792	9,803	7,029	2,320	279	54	20	9	6	25,685
Normal	7	64	1,142	1,197	1,818	1,224	478	128	28	9	4	3	6,101
Below Normal	7	56	183	404	678	717	159	91	20	5	3	2	2,326
Dry	6	19	70	98	231	145	91	48	9	3	2	2	724
All Years	9	89	1,140	4,221	8,124	5,635	2,567	249	38	14	7	4	22,097
Difference in Flow blw San Antonio and Alameda Creek Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff) 2018 WSIP minus WSIP													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	425	1,081	537	1,259	510	-63	0	0	0	0	3,749
Above Normal	0	0	359	111	685	932	4	0	0	0	0	0	2,091
Normal	0	0	240	81	83	121	78	11	0	0	0	0	612
Below Normal	0	0	0	0	16	4	-4	0	0	0	0	0	15
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	204	250	266	463	115	-10	0	0	0	0	1,288

APPENDIX O3

Table 2.6-15 illustrates the same information for the variant and base settings. Table 2.6-15 shows the larger differences in flow that would occur between the variant and base settings. Those differences are particularly due to the effects of the restoration of Calaveras Reservoir operating capacity and the difference in San Antonio Reservoir storage operations.

Table 2.6-15

Flow blw San Antonio and Alameda Creek Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)					Feb	Mar	Apr	May	Jun	Jul	2018 WSIP		WY Total
	Oct	Nov	Dec	Jan							Aug	Sep	
Wet	6	154	3,582	15,900	28,986	20,536	10,465	644	76	33	15	9	80,407
Above Normal	19	150	1,562	4,903	10,488	7,961	2,324	280	54	20	9	6	27,776
Normal	7	64	1,382	1,278	1,901	1,345	556	139	28	9	4	3	6,713
Below Normal	7	56	183	404	694	720	154	91	20	5	3	2	2,340
Dry	6	19	70	98	231	145	91	48	9	3	2	2	724
All Years	9	89	1,344	4,471	8,390	6,098	2,682	239	38	14	7	4	23,384
Flow blw San Antonio and Alameda Creek Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	6	154	4,075	20,036	31,342	21,266	10,756	607	76	33	15	9	88,374
Above Normal	19	150	1,948	8,459	14,977	8,954	1,977	276	54	20	9	6	36,849
Normal	7	64	1,723	2,251	4,153	2,244	544	128	28	9	4	3	11,157
Below Normal	7	56	183	404	720	717	154	91	20	5	3	2	2,363
Dry	6	19	70	98	231	145	91	48	9	3	2	2	724
All Years	9	89	1,587	6,205	10,225	6,620	2,664	229	38	14	7	4	27,691
Difference in Flow blw San Antonio and Alameda Creek Confluence (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	-492	-4,136	-2,355	-730	-291	37	0	0	0	0	-7,967
Above Normal	0	0	-386	-3,557	-4,489	-993	347	4	0	0	0	0	-9,073
Normal	0	0	-341	-973	-2,252	-899	12	11	0	0	0	0	-4,443
Below Normal	0	0	0	0	-26	4	0	0	0	0	0	0	-22
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	-243	-1,734	-1,835	-523	17	10	0	0	0	0	-4,307

2.7 Crystal Springs and San Andreas Reservoirs

There are differences in Crystal Springs Reservoir operations among the WSIP, variant, and base settings. Figure 2.7-1 illustrates a chronological trace of the simulation of Crystal Springs Reservoir storage and stream releases from Crystal Springs Dam. Shown in Figure 2.7-1 are the results for the WSIP, variant, and base settings. Fundamental to the difference in storage operations between the WSIP and variant settings and the base setting is the restoration of reservoir operation capacity in the WSIP and variant setting that does not occur in the base setting. The result is the operation of Crystal Springs Reservoir at a lower maximum storage in the base setting. The difference in Crystal Springs Reservoir storage between the variant and WSIP settings is caused by the interaction of the increased demand served by the system's resources (a net 265 mgd for the variant and a net 290 mgd for the WSIP), which tends to lessen the operational range of the reservoir in the variant setting. Less drawdown and an accelerated replenishment of Crystal Springs Reservoir storage (as well as other Bay Area reservoirs) would occur with less systemwide demand to serve. The magnitude of the draw of storage from Crystal Springs Reservoir is partially dependent on the discretionary assumptions of the model that proportion the use of storage among the Bay Area system reservoirs. In actual operations, some of these differences may not occur, as system operators and prevailing hydraulic and hydrologic conditions may result in a different apportionment of effect among the reservoirs. However, the operational strategy prefers the retention of storage in the Peninsula reservoirs, similar to the strategy used by the model. Figure 2.7-2 illustrates the average monthly storage in Crystal Springs Reservoir for the 82-year simulation, and the range in storage for each month for the variant and WSIP settings.

APPENDIX O3

Figure 2.7-1
Crystal Springs Reservoir Storage and Release

APPENDIX O3

Figure 2.7-2

Figure 2.7-3 illustrates the average monthly storage in Crystal Springs Reservoir for the 82-year simulation, and the range in storage for each month for the variant and base settings. The variant setting would result in reservoir storage operating at a higher average level during all months, and the range of operating storage would be larger in some months.

Figure 2.7-3

Table 2.7-1 illustrates the modeled variant and WSIP stream releases from Crystal Springs Reservoir and the differences between the two settings. Modeling results indicate that an increase or decrease in the occasional release could occur. The potential difference is attributed to a difference in the operating range of reservoir storage in the variant setting. In actual operations, it is anticipated that system operators would manage the reservoir system whereby stream releases would be minimal under any setting, and the effect would be essentially no difference between the variant and WSIP settings. Similarly, Table 2.72 illustrates the stream releases for the variant and base settings, and the difference in modeled flows between the two settings. A difference in Crystal Springs Reservoir storage between the two settings would lead to a different potential to regulate reservoir inflow, which could lead to different stream releases. However, as described above, actual system operations attempt to minimize releases under any setting, and thus the difference in releases between the variant and base setting is minimal, if any.

Table 2.7-1

Total Stream Release from Crystal Springs Reservoir (Acre-feet)(Average within Year Type - Grouped by 5 Local Reservoir Runoff)2018 WSIP													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	215	2,186	4,073	833	310	101	0	0	0	0	7,718
Above Normal	0	0	0	195	600	0	26	140	0	0	0	0	960
Normal	0	0	0	0	0	0	48	77	0	0	0	0	125
Below Normal	0	0	0	0	0	0	28	12	0	0	0	0	39
Dry	0	0	0	0	0	0	0	26	15	0	0	0	41
All Years	0	0	42	467	919	163	81	71	3	0	0	0	1,745
Total Stream Release from Crystal Springs Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	0	1,098	2,435	732	115	48	0	0	0	0	4,428
Above Normal	0	0	0	111	353	0	32	47	0	0	0	0	544
Normal	0	0	0	0	0	0	0	31	0	0	0	0	31
Below Normal	0	0	0	0	0	0	31	35	0	0	0	0	67
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	0	237	548	143	36	33	0	0	0	0	997
Difference in Total Stream Release from Crystal Springs Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff) 2018 WSIP minus WSIP													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	215	1,088	1,638	101	195	53	0	0	0	0	3,290
Above Normal	0	0	0	83	247	0	-6	92	0	0	0	0	416
Normal	0	0	0	0	0	0	48	46	0	0	0	0	94
Below Normal	0	0	0	0	0	0	-4	-24	0	0	0	0	-28
Dry	0	0	0	0	0	0	0	26	15	0	0	0	41
All Years	0	0	42	230	371	20	45	38	3	0	0	0	749

Table 2.7-2

Total Stream Release from Crystal Springs Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	215	2,186	4,073	833	310	101	0	0	0	0	7,718
Above Normal	0	0	0	195	600	0	26	140	0	0	0	0	960
Normal	0	0	0	0	0	0	48	77	0	0	0	0	125
Below Normal	0	0	0	0	0	0	28	12	0	0	0	0	39
Dry	0	0	0	0	0	0	0	26	15	0	0	0	41
All Years	0	0	42	467	919	163	81	71	3	0	0	0	1,745
Total Stream Release from Crystal Springs Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	107	2,744	4,279	1,376	1,047	2	0	0	0	0	9,556
Above Normal	0	0	0	618	1,343	29	52	100	0	0	0	0	2,142
Normal	0	0	0	0	268	0	0	0	0	0	0	0	268
Below Normal	0	0	0	0	0	0	0	0	0	0	0	0	0
Dry	0	0	0	0	0	0	0	0	62	0	0	0	62
All Years	0	0	21	664	1,166	274	215	21	12	0	0	0	2,373
Difference in Total Stream Release from Crystal Springs Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	107	-558	-207	-542	-737	98	0	0	0	0	-1,838
Above Normal	0	0	0	-424	-743	-29	-26	40	0	0	0	0	-1,182
Normal	0	0	0	0	-268	0	48	77	0	0	0	0	-143
Below Normal	0	0	0	0	0	0	28	12	0	0	0	0	39
Dry	0	0	0	0	0	0	0	26	-48	0	0	0	-22
All Years	0	0	21	-197	-247	-112	-134	50	-9	0	0	0	-628

Reservoir storage at San Andreas Reservoir would follow a systematic filling and lowering each year; however, there would be slight differences in drawdown between the variant and WSIP settings, primarily due to the coincidence of the effects of different systemwide maintenance and water demands within each setting. Figure 2.7-4 illustrates a chronological trace of the simulation of San Andreas Reservoir storage and stream releases from San Andreas Dam. Shown in Figure 2.7-4 are the results for the WSIP, variant, and base settings. There are no projected stream releases from San Andreas Reservoir in any setting. Compared to the base setting, as Figure 2.7-4 illustrates, there would be a difference in storage operation every fifth year for the WSIP and variant settings. These differences would be the result of Hetch Hetchy conveyance maintenance, which is assumed to occur systematically in the variant and WSIP settings. The maintenance constrains the amount of Hetch Hetchy water supplied to serve water demands in the Bay Area. As previously discussed, during these winter periods the Bay Area reservoir system would accommodate the reduction in imported supply by serving the Bay Area water deliveries with the local watersheds' runoff and storage. At San Andreas Reservoir, serving this water demand would affect the reservoir when additional required water production at Harry Tracy WTP associated with WSIP or the variant exceeded the ability to maintain San Andreas Reservoir storage with pumping from Crystal Springs Reservoir. In the modeling, the conveyance capacity from Crystal Springs Reservoir is assumed to be the same among all of the settings. The additional water demand of the WSIP and variant require additional production from Harry Tracy WTP to be drawn from San Andreas Reservoir.

APPENDIX O3

Figure 2.7-4

San Andreas Reservoir Storage and Stream Release

APPENDIX O3

Figure 2.7-5 illustrates the average monthly storage in San Andreas Reservoir for the 82-year simulation, and the range in storage for each month for the variant and base settings.

Figure 2.7-5

2.8 Pilarcitos Reservoir

Coastside County Water District's (Coastside CWD) water demand and its SFPUC purchase request are projected to increase within the WSIP planning horizon of year 2030. Within the context of the 2030 purchase request of 300 mgd , Coastside CWD's portion is estimated to amount to about 3 mgd . This projected purchase request is approximately 1 mgd greater that its current purchase request. Considering the current physical constraints on deliveries from the SFPUC to Coastside CWD and the ongoing planning activities in the watershed, the precise means of serving Coastside CWD's additional purchase request, and the resultant potential changes in the operation of SFPUC facilities and their affected environs, are uncertain. ${ }^{2}$ For the variant, Coastside CWD's delivery would remain at its current level of approximately 1.8 mgd .

Assuming a range of potential means to serve the additional purchase request from Coastside CWD, the following are potential hydrologic effects on SFPUC facilities and their affected environs:

- Due to limited yield from Pilarcitos Reservoir, additional diversions would be required from Crystal Springs Reservoir.
- If deliveries to Coastside CWD from Pilarcitos Reservoir increase during the winter season, these deliveries could potentially reduce storage in Pilarcitos Reservoir, thereby potentially reducing diversions to the San Mateo Creek watershed. Although the increased delivery would increase releases to Pilarcitos Creek from Pilarcitos Dam for a period of time, the increase would subsequently lead to a reduction in spills past Stone Dam.
- Additional wintertime deliveries could also potentially impair the ability to provide carryover storage into the summer season from Pilarcitos Reservoir, and subsequently lead to an acceleration of the beginning of the season when releases to Pilarcitos Creek from Pilarcitos Reservoir consist only of the passage of reservoir inflow.
- An increase in summertime deliveries from Pilarcitos Creek could also accelerate the beginning of the season when releases to Pilarcitos Creek from Pilarcitos Reservoir consist only of the passage of reservoir inflow.

Figure 2.8-1 illustrates a chronological trace of the simulation of Pilarcitos Reservoir storage and stream releases from Pilarcitos Dam. Shown in Figure 2.8-1 are the results for the WSIP, variant ${ }_{2}$ and base

[^5]
APPENDIX O3

settings. For the WSIP setting, the operation assumes an increase in purchase request by Coastside CWD, distributed on a proportionate monthly pattern during the year consistent with historical SFPUC deliveries. Also assumed is a conveyance constraint of 2 mgd to Coastside CWD from the Pilarcitos Creek source of water. When the assumed monthly purchase request of Coastside CWD exceeds this conveyance constraint, Coastside CWD's request is met with deliveries from Crystal Springs Reservoir. For the variant setting, Coastside CWD's demand is the same as depicted for the base setting.

Compared to the WSIP setting, the variant would draw less water from Pilarcitos Reservoir, thus avoiding the effects on Pilarcitos Reservoir and its operations associated with the WSIP. A potential increased draw of storage from Pilarcitos Reservoir earlier in the year would not occur under the variant, and thus the earlier summertime reduction in Pilarcitos Reservoir releases to the Pilarcitos Creek would not occur. The variant's operation would be much the same as, if not identical to, that depicted for the base setting. Figure 2.8-2 illustrates the average monthly storage in Pilarcitos Reservoir for the 82-year simulation, and the range in storage for each month for the variant and base settings.

There are occasional differences in the operation of Pilarcitos Reservoir due to slight changes in the overall operation of the SFPUC system. These changes could affect the timing and frequency of the transfer of water from the Pilarcitos Creek watershed to the San Mateo Creek watershed.

Figure 2.8-1
Pilarcitos Reservoir Storage and Stream Release

APPENDIX O3

Figure 2.8-2

Stream releases from Pilarcitos Dam are also shown in Figure 2.8-1. Releases can occur for diversions at Stone Dam for Coastside CWD deliveries, conveyance to the San Mateo Creek watershed (e.g., Crystal Springs Reservoir), and reservoir spills. Pilarcitos Creek typically gains flow from unregulated tributary streams and runoff below Pilarcitos Dam. The differences in flow between the variant setting and base setting are shown chronologically in Table 2.8-1 and summarized by monthly averages within year types in Table 2.8-2. The reductions in flows during the winter and spring are indicative of the averaging of the few instances when additional water is transferred to the San Mateo watershed from Pilarcitos Reservoir.

The effect of the variant on Pilarcitos Creek flows below Stone Dam is different than the effect on flows below Pilarcitos Dam. Figure 2.8-3 illustrates the chronological trace of inflow to Stone Dam, which includes releases from Pilarcitos Dam to Pilarcitos Creek and unregulated flow to the stream below Pilarcitos Dam, and releases (spills) from Stone Dam to Pilarcitos Creek. Shown in the figure are the results for the WSIP, variant, and base settings. The flow past Stone Dam in all settings is typically minor (zero in modeling results, but may be measurable in terms of leakage and seepage past the dam), as inflow to the dam is diverted to Coastside CWD or to the San Mateo watershed. Releases past Stone Dam typically occur when unregulated flow below Pilarcitos Dam exceeds the delivery needs of Coastside CWD at a time when the storage level at Crystal Springs Reservoir rejects the water from the Pilarcitos watershed. There are a few instances when flow past Stone Dam in the variant setting would be diminished by the change in releases from Pilarcitos Reservoir. Table 2.8-3 summarizes the results for the variant and base settings in terms of average monthly flows by year type, and the average differences in flow between the two settings.

APPENDIX O3

Table 2.8-1
Difference in Total Stream Release from Pilarcitos Reservoir (Acre-feet)

APPENDIX O3

Table 2.8-2

Total Stream Release from Pilarcitos Reservoir (Acre-feet)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	54	3	172	837	2,116	1,653	13	70	152	175	183	177	5,606
Above Normal	56	37	14	11	589	388	22	116	161	181	186	169	1,928
Normal	54	3	7	15	11	9	63	143	171	185	159	127	947
Below Normal	57	6	7	15	6	24	103	154	164	171	124	63	894
Dry	36	0	11	27	17	43	70	69	55	44	8	0	381
All Years	51	10	41	177	542	418	54	111	141	152	133	107	1,938
Total Stream Release from Pilarcitos Reservoir (Acre-feet)													
(Average within	- G	by 5	servoir									Base	
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	54	3	4	953	2,144	1,770	242	70	152	175	183	177	5,927
Above Normal	56	37	20	137	605	641	22	115	161	181	186	169	2,328
Normal	55	3	7	15	24	9	60	139	171	185	164	128	960
Below Normal	57	6	7	15	6	23	103	154	164	171	124	65	894
Dry	36	0	11	26	17	41	70	69	55	44	8	0	378
All Years	52	10	10	225	553	493	98	110	141	152	134	108	2,085
Difference in Total Stream Release from Pilarcitos Reservoir (Acre-feet) (Average within Year Type - Grouped by 5 Local Reservoir Runoff)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	169	-116	-28	-117	-229	0	0	0	0	0	-321
Above Normal	0	0	-6	-126	-15	-253	0	1	0	0	0	0	-400
Normal	-1	0	0	0	-13	1	3	3	0	0	-5	-1	-12
Below Normal	0	0	0	0	0	0	1	0	0	0	0	-1	0
Dry	0	0	0	0	0	2	0	0	0	0	0	0	2
All Years	0	0	32	-49	-11	-75	-44	1	0	0	-1	0	-148

APPENDIX O3

Figure 2.8-3
Stone Dam Stream Release and Inflow

APPENDIX O3

Table 2.8-3

Total Stream Release from Stone Dam (Acre-feet)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	332	1,652	3,233	2,366	112	0	0	0	0	0	7,695
Above Normal	0	0	46	332	1,164	553	0	0	0	0	0	0	2,095
Normal	0	0	49	37	195	0	0	0	0	0	0	0	281
Below Normal	0	0	0	0	0	0	0	0	0	0	0	0	0
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	84	398	910	576	22	0	0	0	0	0	1,991
Total Stream Release from Stone Dam (Acre-feet)													
(Average within	- Gr	by 5	servoir	off)								Base	
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	164	1,819	3,252	2,509	479	0	0	0	0	0	8,223
Above Normal	0	0	46	384	1,174	921	0	0	0	0	0	0	2,525
Normal	0	0	49	30	197	0	0	0	0	0	0	0	276
Below Normal	0	0	0	0	0	0	0	0	0	0	0	0	0
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	51	440	917	680	94	0	0	0	0	0	2,182
Difference in Total Stream Release from Stone Dam (Acre-feet)													
(Average within	- Gr	by 5	servoi								WSIP	Base	
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
Wet	0	0	169	-167	-19	-143	-368	0	0	0	0	0	-528
Above Normal	0	0	0	-52	-11	-368	0	0	0	0	0	0	-430
Normal	0	0	0	7	-2	0	0	0	0	0	0	0	4
Below Normal	0	0	0	0	0	0	0	0	0	0	0	0	0
Dry	0	0	0	0	0	0	0	0	0	0	0	0	0
All Years	0	0	33	-42	-6	-104	-72	0	0	0	0	0	-191

Memorandum

Subject: Analysis of WSIP upon the San Joaquin River and the Sacramento-San Joaquin Delta
From:
Daniel B. Steiner
Date: May 22, 2008

1. Introduction

This memorandum summarizes an evaluation of the potential effects of the WSIP on the hydrology and operations of the San Joaquin River and the Sacramento-San Joaquin Delta (Delta). The evaluation is based on a contrast of HH/LSM results for the simulation of the WSIP against the simulation of San Joaquin River and Delta hydrology and operations. The projected hydrology due to the WSIP is primarily discussed in terms of a comparison to the existing condition.

2. Setting

The Tuolumne River is one of the principal tributaries of the San Joaquin River. Combined with the operations of the Stanislaus River, the Merced River, and intermittent releases from the upper San Joaquin River, Kings River, and other lesser tributary and uncontrolled flow, the contemporary average annual flow in the Tuolumne River at Vernalis is estimated to be approximately 3,050,000 acre-feet per year (afy), with a very large variance between drought and flood conditions. Figure 2-1 illustrates the setting of the Tuolumne River within the San Joaquin River system.

The Tuolumne River experiences an average annual unimpaired runoff of approximately 1,850,000 afy, of which an average of approximately 669,000 afy are released at La Grange Dam to the lower Tuolumne River. Releases below La Grange Dam are guided by FERC flows requirements and range between 94,000 and 301,000 afy. Additional releases occur in excess of FERC requirements during wetter years. The general magnitude and distribution of current releases at La Grange Dam by year type are illustrated in Figure 2-2. The effect of the WSIP on the Don Pedro Project would be to reduce inflow to Don Pedro Reservoir, which, if not affecting TID/MID canal diversions, would lead to a depletion in Don Pedro Reservoir storage. The depletion in reservoir storage would be replenished during wetter years when, absent the WSIP, releases below La Grange Dam would be in excess of required FERC flows. The average annual reduction in flow below La Grange Dam due to the WSIP amounts to approximately 25,000 afy, primarily during wetter years and during the winter or spring period depending on the coincidence of the WSIP's effect on inflow and the sequence of month-to-month and year-to-year hydrology.

The hydrology of the San Joaquin River at Vernalis is illustrated in Figure 2-4. The hydrology at Vernalis is dependent on several factors, including incidental and prescribed operations within the basin for the San Joaquin River. Generally, the flow in the San Joaquin River is a result of the independent operation of the tributaries for purposes specific to their respective watershed basins. An amount of flow interaction with the river also occurs through groundwater accretions, diversions, and return flows from adjacent lands.

The U.S. Bureau of Reclamation's (USBR) Central Valley Project (CVP) New Melones Project regulates the Stanislaus River, which is operated for purposes of water supply, flood control, power generation, fishery enhancement, and water quality improvement in the lower San Joaquin River. The operations of the New Melones Project are partially guided by State Water Resources Control Board (SWRCB) decisions, including Decision 1422 pertaining to releases for existing water rights, fish and wildlife enhancement, and the maintenance of water quality in the Stanislaus River and San Joaquin River. Decision 1641 assigns additional responsibility to the USBR concerning flow requirements at Vernalis.

APPENDIX O4

Figure 2-1
San Joaquin River System

APPENDIX O4

Figure 2-2
Tuolumne River Flow below La Grange Dam

Figure 2-3
Tuolumne River Flow below La Grange Dam - WSIP Effect

Figure 2-4
San Joaquin River Flow at Vernalis

APPENDIX O4

Water quality objectives at Vernalis are established as follows: for the irrigation season (April through August), a running 30-day average conductivity of 0.7 milliSiemens per centimeter ($\mathrm{mS} / \mathrm{cm}$); and during the rest of the year, $1.0 \mathrm{mS} / \mathrm{cm}$. Flow requirements at Vernalis are established for the February through June period. Based on the wetness of the San Joaquin River Basin and the required location of a water quality parameter prescribed by Decision 1641 (called "X2"), the "base" required flow at Vernalis ranges between 710 cubic feet per second (cfs) and 3,420 cfs. During a 30-day period in April and May, the Vernalis Adaptive Management Plan (VAMP) flow objective ranges between 3,200 cfs and 7,000 cfs. The SWRCB has assigned the USBR the responsibility for compliance with the Vernalis flow standards, with other entities within the basin contributing towards compliance during the VAMP period through agreement. Water quality (electrical conductivity) at Vernalis is illustrated in Figure 2-5.

Figure 2-5
San Joaquin River Water Quality at Vernalis

The Delta forms the confluence of the Sacramento and San Joaquin Rivers, and is the eastern portion of the San Francisco Bay estuary. The CVP and the State Water Project (SWP) use the Delta channels to convey water to their respective export facilities in the southern Delta. Jones Pumping Plant (CVP) has a pumping capacity of $4,600 \mathrm{cfs}$; Banks Pumping Plant (SWP) has a pumping capacity of 10,300 cfs, although it is typically constrained to an average pumping capacity of 6,680 cfs. Figure 2-6 illustrates the geographical setting of the Delta.

Through coordinated operation, the CVP and SWP control releases from reservoirs and exports from the Delta to serve water supply contracts totaling several million acre-feet. The Coordinated Operating Agreement (COA) sets guidelines for sharing the supply as well as the responsibility for meeting water quality standards in the Delta. Currently, Delta water quality objectives are prescribed by the 1995 Water Quality Control Plan for the San Francisco Bay/Sacramento-San Joaquin Delta Estuary through SWRCB Decision 1641.

In addition to SWRCB requirements, the operations of the CVP and SWP are also affected by the objectives of their various authorizations, requirements under the Endangered Species Act, and legal directives. Most recently, in December 2007 a federal court constrained the export operations of the CVP and SWP while a new federal biological opinion is developed for delta smelt. Additional CVP and SWP operational constraints may be developed for the protection of salmon.

To provide a context for comparing changes in Tuolumne River flow, Table 2-1 illustrates several parameters of historical measured flow within the Delta. For the recent period 1995 through 2006, the average annual total exports from the Delta have amounted to approximately 5,585,000 acre-feet, as computed outflow has been $24,189,000$ acre-feet. Measured San Joaquin River flow at Vernalis for the same period, which includes flow from the Tuolumne River, has been an average annual of 4,075,000 acre-feet.

APPENDIX O4

Figure 2-6
Sacramento-San Joaquin Delta

Sacramento-San Joaquin Delta Atlas

APPENDIX O4

Table 2-1
Measured Historical Delta Flows

Water Year	Total Exports	Sacramento River Inflow	San Joaquin R Inflow	Delta Ouflow
1971	2,874,333	24,192,000	1,775,014	23,251,928
1972	3,495,757	12,548,000	1,108,825	9,226,357
1973	3,440,149	24,482,000	2,373,013	24,414,917
1974	4,408,835	38,233,000	2,769,796	37,459,002
1975	3,939,862	20,811,000	2,814,656	19,930,841
1976	4,942,896	11,035,000	1,527,879	6,596,232
1977	2,181,995	5,509,000	416,534	2,522,619
1978	4,402,769	20,480,000	4,478,832	21,349,263
1979	4,559,091	13,144,000	2,614,526	11,441,671
1980	4,607,462	25,629,000	5,954,154	28,155,761
1981	4,789,735	11,609,000	1,765,402	7,912,080
1982	4,677,208	37,221,000	5,474,326	40,945,458
1983	4,470,267	48,798,000	15,406,434	64,289,934
1984	3,938,610	27,327,000	6,284,455	30,635,544
1985	5,583,587	12,379,000	2,107,505	8,434,052
1986	5,411,704	28,061,000	5,227,289	29,671,290
1987	5,175,981	10,080,000	1,813,670	6,078,525
1988	5,736,575	9,829,000	1,165,644	4,417,524
1989	6,100,259	12,347,000	1,058,878	6,592,739
1990	5,929,312	9,903,000	915,614	3,933,160
1991	3,294,025	7,652,000	657,097	4,347,499
1992	3,021,048	8,142,000	696,216	5,178,236
1993	4,758,603	21,538,000	1,702,844	19,075,046
1994	4,113,456	11,409,741	1,219,740	6,010,543
1995	5,149,575	27,780,391	6,300,636	41,824,482
1996	5,338,588	25,991,516	3,922,419	25,511,023
1997	5,084,754	30,816,584	6,772,377	34,333,623
1998	4,749,955	38,011,421	8,490,664	43,506,339
1999	4,806,790	23,405,992	3,567,963	22,570,354
2000	6,285,299	21,321,316	2,845,985	18,175,727
2001	5,039,586	10,883,722	1,732,250	6,975,620
2002	5,499,327	13,812,201	1,395,751	9,190,646
2003	6,280,616	19,426,635	1,364,926	14,049,962
2004	6,093,213	20,250,761	1,373,096	14,922,390
2005	6,422,061	17,453,822	3,789,397	15,403,712
2006	6,271,595	41,073,358	7,339,862	43,806,137
2007	5,742,300	11,372,200	1,591,588	
Average	4,827,491	20,377,261	3,292,304	19,781,673

[^6]
3. San Joaquin River

The effect of the WSIP on San Joaquin River hydrology is evaluated by a post-process analysis of operation simulations of the Tuolumne River system and the San Joaquin River Basin system. The Tuolumne River system, including the SFPUC regional water system and the Don Pedro Project, is modeled using the HH/LSM, as described in the PEIR. Results are provided from that model for the flow release to the lower Tuolumne River below La Grange Dam. Changes in those projected releases between the PEIR "base" study (current conditions without the WSIP) and a projected future condition (with the WSIP) provide the hydrologic data needed to track the WSIP's effects downstream of La Grange Dam. These projected changes in La Grange Dam releases to the Tuolumne River are combined with a separate San Joaquin River operation simulation to estimate the impacts of the WSIP on San Joaquin River hydrology and operations.

APPENDIX O4

CalSim II, a computer model developed jointly by the Department of Water Resources (DWR) and the USBR, is used to model the San Joaquin River Basin system and much of the Central Valley and Delta region water resources infrastructure system. Focused primarily on the operations of the CVP and SWP, CalSim II necessarily incorporates the simulated operations of non-CVP/SWP projects that exist on tributaries to the San Joaquin and Sacramento Rivers. Explicitly, the operation of the Don Pedro Project is modeled in CalSim II. Although the HH/LSM and CalSim II are different models, the underlying logic of Don Pedro Project operations for each of the models was developed coincidentally and produces very similar results.

A subset of the CalSim II model and its results are used for this analysis of San Joaquin River hydrology. Development of the CalSim II model during 2005 included a refinement of the depiction of San Joaquin River Basin operations and hydrology. For the development process, a stand-alone version of CalSim II focusing on San Joaquin River Basin operations was constructed. This version of the model uses a constant boundary condition for the geographical range of the system outside of the San Joaquin River Basin to speed up the processing of simulations. This approach to CalSim II modeling of the San Joaquin River Basin system is adequate for studies that focus on San Joaquin River operations, which are not greatly dependent on a broader CVP-SWP operation. The model's depiction of the San Joaquin River Basin's current operations and hydrology received a peer review (2005) and was described in a public workshop sponsored by the SWRCB during 2006. The CalSim II results used for that workshop are used for this analysis. ${ }^{1}$

3.1 Releases to the Tuolumne River at La Grange Dam

As described above, the effect of the WSIP on the Don Pedro Project would be to reduce inflow to Don Pedro Reservoir, which would lead to depletions in Don Pedro Reservoir storage. The depletion in reservoir storage would be replenished during wetter years when, absent the WSIP, releases below La Grange Dam would be in excess of FERC-required flows. Table 3.1-1 and Table 3.1-2 illustrate the projected monthly releases at La Grange Dam to the Tuolumne River for the WSIP and base settings for the 82-year simulation period (1921-2002). Table 3.1-3 illustrates the projected difference in releases at La Grange Dam due to the WSIP's effect on Don Pedro Project operations. ${ }^{2}$ The average annual reduction in flow below La Grange Dam due to the WSIP would amount to approximately 25,000 afy, primarily during wetter years and during the winter or spring period depending on the coincidence of the WSIP's effect on inflow and the sequence of month-to-month and year-to-year hydrology. The projected difference in releases from La Grange Dam (comparing the WSIP and base settings), ranked in descending order of wetness in the San Joaquin River Basin runoff, is illustrated in Table 3.1-4. These changes in La Grange Dam releases to the lower Tuolumne River would change the flow in the Tuolumne River between La Grange Dam and the confluence with the San Joaquin River. The flow projected in the San Joaquin River between the Tuolumne River confluence and the Stanislaus River confluence would be similarly changed.

3.2 Flow Upstream of the Stanislaus River Confluence

The flow of the San Joaquin River upstream of the Stanislaus River confluence (commonly referred to as the "Maze" Boulevard crossing of the San Joaquin River) is a point of interest in the identification of San Joaquin River hydrology. The tributary operations upstream of the Stanislaus River confluence (e.g., the Tuolumne River and Merced River) are generally not required to be responsive to San Joaquin River conditions. Therefore, the changes in the hydrology of the San Joaquin River upstream of the Stanislaus River due to the WSIP can be described by the change in hydrology that occurs at La Grange Dam. Downstream of the Stanislaus River confluence, the San Joaquin River hydrology may also include the reactions of the USBR's New Melones Project (Stanislaus River) to changes in the river at Maze; that is, reactions to both flow and water quality conditions. Projected changes in San Joaquin River flow upstream of the Stanislaus River confluence at Maze are illustrated in Figure 3.2-1 through Figure 3.2-4. ${ }^{2}$ The figures illustrate the wetness rank-ordered flow at Maze with the projected coincidental change in

[^7]APPENDIX O4

Table 3.1-1
Total La Grange Release to River (Acre-feet) - WSIP

Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
1921	12,744	10,711	11,068	11,068	33,964	231,996	111,640	64,123	14,876	15,372	15,372	14,876	547,810
1922	24,397	17,852	18,447	18,447	16,661	169,885	167,789	61,936	470,876	59,363	27,204	24,862	1,077,719
1923	24,397	17,852	52,816	101,025	90,321	34,926	156,958	61,936	14,876	15,372	15,372	14,876	600,727
1924	24,397	17,852	18,447	18,447	17,256	18,447	14,650	14,589	2,975	3,074	3,074	2,975	156,183
1925	7,736	8,926	9,223	9,223	8,331	9,223	73,158	69,584	4,463	4,612	4,612	4,463	213,554
1926	13,240	10,413	10,760	10,760	9,719	10,760	31,566	30,449	4,463	4,612	4,612	4,463	145,817
1927	9,223	8,926	9,223	9,223	8,331	9,223	64,241	61,936	14,876	15,372	15,372	14,876	240,822
1928	24,397	17,852	18,447	18,447	53,135	208,209	37,200	35,902	4,463	4,612	4,612	4,463	431,739
1929	12,744	10,711	11,068	11,068	9,997	11,068	26,770	25,952	2,975	3,074	3,074	2,975	131,476
1930	9,223	8,926	9,223	9,223	8,331	9,223	27,049	26,214	2,975	3,074	3,074	2,975	119,510
1931	9,223	8,926	9,223	9,223	8,331	9,223	14,650	14,589	2,975	3,074	3,074	2,975	95,486
1932	7,736	8,926	9,223	9,223	8,628	9,223	64,241	61,936	14,876	15,372	15,372	14,876	239,632
1933	24,397	17,852	18,447	18,447	16,661	18,447	35,753	34,374	4,463	4,612	4,612	4,463	202,528
1934	9,223	8,926	9,223	9,223	8,331	9,223	14,650	14,589	2,975	3,074	3,074	2,975	95,486
1935	7,736	8,926	9,223	9,223	8,331	9,223	64,241	61,936	14,876	15,372	15,372	14,876	239,335
1936	24,397	17,852	18,447	18,447	54,167	204,086	168,811	61,936	14,876	15,372	15,372	14,876	628,639
1937	24,397	17,852	18,447	18,447	194,659	260,123	177,081	61,936	14,876	15,372	15,372	14,876	833,438
1938	24,397	17,852	88,717	79,596	381,104	454,579	291,007	288,864	227,401	156,701	48,636	34,811	2,093,665
1939	24,397	17,852	18,447	18,447	45,240	66,009	28,525	27,598	4,463	4,612	4,612	4,463	264,665
1940	9,223	8,926	9,223	9,223	8,628	196,482	163,672	61,936	14,876	15,372	15,372	14,876	527,809
1941	24,397	17,852	18,447	59,195	262,128	284,760	249,836	61,936	49,928	88,796	26,488	21,347	1,165,110
1942	24,397	17,852	41,845	150,525	153,324	148,197	218,453	228,994	91,485	115,177	26,854	17,017	1,234,120
1943	24,397	17,852	32,826	197,464	149,252	336,578	194,801	61,936	72,671	15,372	17,014	17,597	1,137,760
1944	24,397	17,852	18,447	18,447	17,256	55,093	47,894	45,898	4,463	4,612	4,612	4,463	263,434
1945	13,240	10,413	10,760	10,760	86,052	215,383	119,005	61,936	14,876	15,372	15,372	14,876	588,045
1946	24,397	25,160	229,316	136,983	150,231	166,940	68,500	61,936	14,876	15,372	15,372	14,876	923,959
1947	24,397	17,852	18,447	18,447	16,661	18,447	28,054	27,156	4,463	4,612	4,612	4,463	187,611
1948	9,223	8,926	9,223	9,223	8,628	9,223	39,947	38,477	4,463	4,612	4,612	4,463	151,020
1949	12,744	10,711	11,068	11,068	9,997	11,068	33,037	31,999	4,463	4,612	4,612	4,463	149,842
1950	12,744	10,711	11,068	11,068	9,997	11,068	61,680	58,823	4,463	4,612	4,612	4,463	205,309
1951	13,240	10,413	227,649	225,258	195,815	153,328	104,899	99,341	4,463	4,612	4,612	4,463	1,048,093
1952	13,240	10,413	10,760	10,760	56,975	213,745	258,495	264,611	230,309	162,673	38,667	32,093	1,302,741
1953	24,397	17,852	18,447	27,845	60,046	18,447	87,632	83,153	4,463	4,612	4,612	4,463	355,969
1954	13,240	10,413	10,760	10,760	9,719	10,760	41,422	39,831	4,463	4,612	4,612	4,463	165,055
1955	13,240	10,413	10,760	10,760	9,719	10,760	31,555	30,438	4,463	4,612	4,612	4,463	145,795
1956	9,223	8,926	9,223	397,642	218,902	177,380	103,683	61,936	153,608	108,969	29,023	30,608	1,309,123
1957	24,397	17,852	18,447	18,447	16,661	25,078	85,025	80,709	4,463	4,612	4,612	4,463	304,766
1958	13,240	10,413	10,760	10,760	9,719	173,384	311,309	268,728	276,764	96,627	36,329	32,935	1,250,968
1959	24,397	17,852	18,447	18,447	32,284	59,822	28,824	27,878	4,463	4,612	4,612	4,463	246,101
1960	9,223	8,926	9,223	9,223	8,628	9,223	24,895	24,194	2,975	3,074	3,074	2,975	115,633
1961	7,736	8,926	9,223	9,223	8,331	9,223	14,650	14,589	2,975	3,074	3,074	2,975	93,999
1962	7,736	8,926	9,223	9,223	8,331	9,223	94,959	90,022	4,463	4,612	4,612	4,463	255,793
1963	13,240	10,413	10,760	10,760	9,719	10,760	64,241	61,936	14,876	15,372	15,372	14,876	252,325
1964	24,397	17,852	18,447	18,447	17,256	18,447	28,168	27,263	4,463	4,612	4,612	4,463	188,427
1965	9,223	8,926	9,223	94,896	193,710	157,615	159,589	61,936	14,876	15,372	32,886	32,779	791,031
1966	24,397	22,517	119,607	51,266	82,677	61,610	32,240	31,252	4,463	4,612	4,612	4,463	443,716
1967	12,744	10,711	11,068	11,068	9,997	84,982	252,040	220,298	388,802	257,232	131,931	28,007	1,418,880
1968	24,397	17,852	18,447	18,447	17,256	32,584	28,988	28,031	4,463	4,612	4,612	4,463	204,152
1969	9,223	8,926	9,223	32,847	276,920	244,541	322,211	447,942	425,936	156,634	66,306	35,885	2,036,594
1970	24,397	17,852	73,665	370,017	136,129	162,608	64,241	61,936	14,876	15,372	15,372	14,876	971,341
1971	24,397	17,852	18,447	18,447	16,661	70,249	66,522	63,363	4,463	4,612	4,612	4,463	314,088
1972	13,240	10,413	10,760	10,760	10,066	10,760	30,579	29,524	2,975	3,074	3,074	2,975	138,200
1973	9,223	8,926	9,223	9,223	8,331	9,223	64,241	61,936	35,698	15,372	15,372	14,876	261,644
1974	24,397	42,215	100,199	144,039	84,226	200,904	125,080	61,936	182,580	15,372	23,592	26,455	1,030,995
1975	24,397	17,852	18,447	18,447	112,415	201,425	100,944	61,936	174,642	21,358	50,309	29,597	831,769
1976	35,185	23,322	33,098	18,447	17,256	18,447	20,660	20,224	2,975	3,074	3,074	2,975	198,737
1977	7,736	8,926	9,223	9,223	8,331	9,223	14,650	14,589	2,975	3,074	3,074	2,975	93,999
1978	7,736	8,926	9,223	9,223	8,331	9,223	64,241	61,936	71,448	15,372	15,372	14,876	295,907
1979	24,397	17,852	18,447	25,892	150,953	195,605	90,635	338,861	14,876	15,372	15,372	14,876	923,138
1980	24,397	17,852	18,447	183,143	376,597	204,132	110,674	105,463	278,671	152,585	41,442	36,580	1,549,983
1981	24,397	17,852	18,447	18,447	16,661	22,926	29,256	28,454	4,463	4,612	4,612	4,463	194,590
1982	12,744	10,711	11,068	32,535	338,147	314,765	511,142	350,499	260,216	155,711	59,424	132,689	2,189,651
1983	155,278	142,160	252,175	268,145	324,750	929,999	277,685	441,769	223,430	236,135	186,588	171,850	3,609,964
1984	24,397	262,407	413,016	228,905	204,697	159,934	64,241	61,936	14,876	15,372	15,372	14,876	1,480,029
1985	24,397	17,852	18,447	18,447	16,661	18,447	34,634	33,325	4,463	4,612	4,612	4,463	200,360
1986	9,223	8,926	9,223	9,223	156,378	441,405	148,505	177,029	197,577	15,372	15,372	17,744	1,205,977
1987	24,397	17,852	18,447	18,447	16,661	18,447	25,003	24,296	2,975	3,074	3,074	2,975	175,648
1988	7,736	8,926	9,223	9,223	8,628	9,223	19,297	18,947	2,975	3,074	3,074	2,975	103,301
1989	7,736	8,926	9,223	9,223	8,331	9,223	26,519	25,717	2,975	3,074	3,074	2,975	116,996
1990	7,736	8,926	9,223	9,223	8,331	9,223	19,866	19,480	2,975	3,074	3,074	2,975	104,106
1991	7,736	8,926	9,223	9,223	8,331	9,223	26,397	25,603	2,975	3,074	3,074	2,975	116,760
1992	7,736	8,926	9,223	9,223	8,628	9,223	20,501	20,075	2,975	3,074	3,074	2,975	105,633
1993	7,736	8,926	9,223	9,223	8,331	9,223	64,241	61,936	14,876	15,372	15,372	23,914	248,373
1994	24,397	17,852	18,447	18,447	16,661	18,447	26,774	25,956	2,975	3,074	3,074	2,975	179,079
1995	9,223	8,926	9,223	9,223	8,331	444,650	252,480	587,468	266,389	378,373	180,518	51,840	2,206,644
1996	24,397	17,852	18,447	18,447	282,350	273,866	138,689	137,214	166,467	15,372	15,372	21,277	1,129,750
1997	24,397	42,957	363,466	949,830	195,855	141,961	64,241	61,936	14,876	15,372	15,372	14,876	1,905,139
1998	24,397	17,852	18,447	18,548	334,719	269,674	194,691	338,154	410,419	282,802	127,440	28,820	2,065,963
1999	24,397	17,852	43,763	118,488	288,111	189,381	85,028	61,936	14,876	15,372	15,372	14,876	889,452
2000	24,397	17,852	18,447	18,447	187,912	217,038	100,903	61,936	92,171	15,372	15,372	14,876	784,723
2001	24,397	17,852	18,447	18,447	16,661	58,155	28,763	27,821	4,463	4,612	4,612	4,463	228,693
2002	9,223	8,926	9,223	9,223	8,331	9,223	32,775	31,582	4,463	4,612	4,612	4,463	136,656
Avg (21-02)	18,815	18,888	36,241	57,087	79,135	114,179	95,290	88,906	63,139	36,354	20,200	15,774	644,009
Max (21-02)	155,278	262,407	413,016	949,830	381,104	929,999	511,142	587,468	470,876	378,373	186,588	171,850	3,609,964
Min (21-02)	7,736	8,926	9,223	9,223	8,331	9,223	14,650	14,589	2,975	3,074	3,074	2,975	93,999

APPENDIX O4

Table 3.1-2
Total La Grange Release to River (Acre-feet) - Base

Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
1921	12,744	10,711	11,068	11,068	33,964	245,398	114,894	64,123	14,876	15,372	15,372	14,876	564,466
1922	24,397	17,852	18,447	18,447	21,795	177,197	175,154	61,936	486,912	61,546	27,209	24,862	1,115,754
1923	24,397	17,852	52,816	101,025	90,321	34,926	159,076	61,936	14,876	15,372	15,372	14,876	602,845
1924	24,397	17,852	18,447	18,447	17,256	18,447	14,650	14,589	2,975	3,074	3,074	2,975	156,183
1925	7,736	8,926	9,223	9,223	8,331	9,223	73,158	69,584	4,463	4,612	4,612	4,463	213,554
1926	13,240	10,413	10,760	10,760	9,719	10,760	31,566	30,449	4,463	4,612	4,612	4,463	145,817
1927	9,223	8,926	9,223	9,223	8,331	9,223	64,241	61,936	41,783	15,372	24,317	28,032	289,830
1928	24,397	38,122	52,916	21,575	67,986	208,208	46,105	35,902	4,463	4,612	4,612	4,463	513,361
1929	12,744	10,711	11,068	11,068	9,997	11,068	26,770	25,952	2,975	3,074	3,074	2,975	131,476
1930	9,223	8,926	9,223	9,223	8,331	9,223	27,049	26,214	2,975	3,074	3,074	2,975	119,510
1931	9,223	8,926	9,223	9,223	8,331	9,223	14,650	14,589	2,975	3,074	3,074	2,975	95,486
1932	7,736	8,926	9,223	9,223	8,628	9,223	64,241	61,936	14,876	15,372	15,372	14,876	239,632
1933	24,397	17,852	18,447	18,447	16,661	18,447	35,753	34,374	4,463	4,612	4,612	4,463	202,528
1934	9,223	8,926	9,223	9,223	8,331	9,223	14,650	14,589	2,975	3,074	3,074	2,975	95,486
1935	7,736	8,926	9,223	9,223	8,331	9,223	64,241	61,936	14,876	15,372	15,372	14,876	239,335
1936	24,397	17,852	18,447	18,447	301,206	220,976	172,446	61,936	14,876	15,372	15,372	14,876	896,203
1937	24,397	17,852	18,447	18,447	210,859	263,318	185,594	61,936	14,876	15,372	15,372	14,876	861,346
1938	24,397	17,852	108,307	79,596	381,104	454,618	298,150	305,878	232,281	156,701	50,809	34,816	2,144,509
1939	24,397	17,852	18,447	18,447	45,240	66,009	28,525	27,598	4,463	4,612	4,612	4,463	264,665
1940	9,223	8,926	9,223	9,223	8,628	234,677	169,350	61,936	14,876	15,372	15,372	14,876	571,682
1941	24,397	17,852	18,447	55,884	262,574	285,182	250,355	61,936	53,464	90,980	26,493	21,347	1,168,911
1942	24,397	17,852	41,845	156,067	153,323	150,861	223,977	231,848	94,247	117,365	26,854	17,017	1,255,653
1943	24,397	17,852	32,826	197,464	149,252	338,579	201,522	61,936	76,970	15,372	19,188	17,602	1,152,960
1944	24,397	17,852	18,447	18,447	17,256	55,093	47,894	45,898	4,463	4,612	4,612	4,463	263,434
1945	13,240	10,413	10,760	10,760	123,508	230,698	119,207	61,936	14,876	15,372	15,372	14,876	641,018
1946	24,397	17,852	229,210	136,983	150,231	179,148	72,112	61,936	14,876	15,372	15,372	14,876	932,365
1947	24,397	17,852	18,447	18,447	16,661	18,447	28,054	27,156	4,463	4,612	4,612	4,463	187,611
1948	9,223	8,926	9,223	9,223	8,628	9,223	39,947	38,477	4,463	4,612	4,612	4,463	151,020
1949	12,744	10,711	11,068	11,068	9,997	11,068	33,037	31,999	4,463	4,612	4,612	4,463	149,842
1950	12,744	10,711	11,068	11,068	9,997	11,068	61,680	58,823	4,463	4,612	4,612	4,463	205,309
1951	13,240	10,413	344,203	225,255	195,815	153,328	104,899	99,341	4,463	4,612	4,612	4,463	1,164,644
1952	13,240	10,413	10,760	10,760	78,332	213,745	258,495	280,490	232,426	162,673	40,841	32,097	1,344,272
1953	24,397	17,852	18,447	27,845	60,046	18,447	87,632	83,153	4,463	4,612	4,612	4,463	355,969
1954	13,240	10,413	10,760	10,760	9,719	10,760	41,422	39,831	4,463	4,612	4,612	4,463	165,055
1955	13,240	10,413	10,760	10,760	9,719	10,760	31,555	30,438	4,463	4,612	4,612	4,463	145,795
1956	9,223	8,926	46,291	436,178	218,897	180,935	106,751	61,936	162,942	111,157	29,023	30,608	1,402,867
1957	24,397	17,852	18,447	18,447	16,661	25,078	85,025	80,709	4,463	4,612	4,612	4,463	304,766
1958	13,240	10,413	10,760	10,760	9,719	211,842	311,309	280,218	277,777	98,815	36,329	32,935	1,304,117
1959	24,397	17,852	18,447	18,447	32,284	59,822	28,824	27,878	4,463	4,612	4,612	4,463	246,101
1960	9,223	8,926	9,223	9,223	8,628	9,223	24,895	24,194	2,975	3,074	3,074	2,975	115,633
1961	7,736	8,926	9,223	9,223	8,331	9,223	14,650	14,589	2,975	3,074	3,074	2,975	93,999
1962	7,736	8,926	9,223	9,223	8,331	9,223	94,959	90,022	4,463	4,612	4,612	4,463	255,793
1963	13,240	10,413	10,760	10,760	9,719	10,760	64,241	61,936	14,876	15,372	15,372	14,876	252,325
1964	24,397	17,852	18,447	18,447	29,030	18,447	28,168	27,263	4,463	4,612	4,612	4,463	200,201
1965	9,223	8,926	9,223	280,632	198,842	168,325	169,358	61,936	14,876	15,372	21,883	32,755	991,351
1966	24,397	22,516	120,759	51,266	99,846	61,610	32,240	31,252	4,463	4,612	4,612	4,463	462,036
1967	12,744	10,711	11,068	11,068	9,997	103,480	252,040	232,725	388,802	259,420	134,115	28,012	1,454,182
1968	24,397	17,852	18,447	18,447	17,256	32,584	28,988	28,031	4,463	4,612	4,612	4,463	204,152
1969	9,223	8,926	9,223	58,091	279,368	255,378	329,852	450,130	428,053	156,634	68,480	35,889	2,089,247
1970	24,397	17,852	73,665	343,421	142,086	183,682	64,241	61,936	14,876	15,372	15,372	14,876	971,776
1971	24,397	17,852	18,447	18,447	16,661	85,781	66,522	63,363	4,463	4,612	4,612	4,463	329,620
1972	13,240	10,413	10,760	10,760	10,066	10,760	30,579	29,524	2,975	3,074	3,074	2,975	138,200
1973	9,223	8,926	9,223	9,223	8,331	16,427	64,861	61,936	96,088	15,372	15,372	14,876	329,858
1974	24,397	42,215	100,199	152,431	84,225	211,369	129,683	61,936	192,487	15,372	25,766	26,460	1,066,540
1975	24,397	17,852	18,447	18,447	112,415	201,425	109,230	61,936	168,121	23,541	50,313	29,597	835,721
1976	35,185	23,322	33,098	18,447	17,256	18,447	20,660	20,224	2,975	3,074	3,074	2,975	198,737
1977	7,736	8,926	9,223	9,223	8,331	9,223	14,650	14,589	2,975	3,074	3,074	2,975	93,999
1978	7,736	8,926	9,223	9,223	8,331	9,223	64,241	61,936	160,931	15,372	15,372	14,876	385,390
1979	24,397	17,852	18,447	29,457	150,953	211,824	92,753	341,049	14,876	15,372	15,372	14,876	947,228
1980	24,397	17,852	18,447	175,502	376,598	211,743	115,553	107,651	280,789	154,773	41,442	36,580	1,561,327
1981	24,397	17,852	18,447	18,447	16,661	22,926	29,256	28,454	4,463	4,612	4,612	4,463	194,590
1982	12,744	10,711	11,068	59,750	349,698	314,765	511,142	352,402	262,057	155,711	63,782	134,816	2,238,646
1983	156,324	139,398	253,127	268,146	324,750	929,999	277,685	451,311	228,033	238,323	186,588	174,030	3,627,714
1984	24,397	260,868	413,016	228,905	204,697	155,998	64,241	61,936	14,876	15,372	15,372	14,876	1,474,554
1985	24,397	17,852	18,447	18,447	16,661	18,447	34,634	33,325	4,463	4,612	4,612	4,463	200,360
1986	9,223	8,926	9,223	9,223	173,491	461,532	159,805	182,071	202,457	15,372	15,372	19,911	1,266,606
1987	24,397	17,852	18,447	18,447	16,661	18,447	25,003	24,296	2,975	3,074	3,074	2,975	175,648
1988	7,736	8,926	9,223	9,223	8,628	9,223	19,297	18,947	2,975	3,074	3,074	2,975	103,301
1989	7,736	8,926	9,223	9,223	8,331	9,223	26,519	25,717	2,975	3,074	3,074	2,975	116,996
1990	7,736	8,926	9,223	9,223	8,331	9,223	19,866	19,480	2,975	3,074	3,074	2,975	104,106
1991	7,736	8,926	9,223	9,223	8,331	9,223	26,397	25,603	2,975	3,074	3,074	2,975	116,760
1992	7,736	8,926	9,223	9,223	8,628	9,223	20,501	20,075	2,975	3,074	3,074	2,975	105,633
1993	7,736	8,926	9,223	9,223	8,331	9,223	64,241	61,936	145,263	78,663	37,258	28,803	468,826
1994	24,397	17,852	18,447	18,447	16,661	18,447	26,774	25,956	2,975	3,074	3,074	2,975	179,079
1995	9,223	8,926	9,223	9,223	8,331	453,913	261,686	589,371	268,231	380,561	180,518	54,017	2,233,223
1996	24,397	17,852	18,447	18,447	284,044	273,866	143,569	142,256	171,347	15,372	15,372	23,444	1,148,413
1997	24,397	42,960	363,466	956,038	195,854	141,961	64,241	61,936	14,876	15,372	15,372	14,876	1,911,349
1998	24,397	17,852	18,447	37,270	334,716	272,793	205,739	342,054	414,193	284,990	127,440	28,820	2,108,711
1999	24,397	17,852	43,763	118,488	288,111	197,943	96,010	61,936	14,876	15,372	15,372	14,876	908,996
2000	24,397	17,852	18,447	18,447	207,006	217,038	100,903	61,936	104,647	15,372	15,372	14,876	816,293
2001	24,397	17,852	18,447	18,447	16,661	58,155	28,763	27,821	4,463	4,612	4,612	4,463	228,693
2002	9,223	8,926	9,223	9,223	8,331	9,223	32,775	31,582	4,463	4,612	4,612	4,463	136,656
Avg (21-02)	18,828	18,994	38,798	60,559	84,433	117,947	97,139	90,047	67,933	37,419	20,654	16,126	668,876
Max (21-02)	156,324	260,868	413,016	956,038	381,104	929,999	511,142	589,371	486,912	380,561	186,588	174,030	3,627,714
Min (21-02)	7,736	8,926	9,223	9,223	8,331	9,223	14,650	14,589	2,975	3,074	3,074	2,975	93,999

APPENDIX O4

Table 3.1-3
Total La Grange Release to River (Acre-feet) - Difference WSIP minus Base

Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
1921	0	0	0	0	0	-13,402	-3,254	0	0	0	0	0	-16,656
1922	0	0	0	0	-5,134	-7,312	-7,365	0	-16,036	-2,183	-5	0	-38,035
1923	0	0	0	0	0	0	-2,118	0	0	0	0	0	-2,118
1924	0	0	0	0	0	0	0	0	0	0	0	0	0
1925	0	0	0	0	0	0	0	0	0	0	0	0	0
1926	0	0	0	0	0	0	0	0	0	0	0	0	0
1927	0	0	0	0	0	0	0	0	-26,907	0	-8,945	-13,156	-49,008
1928	0	-20,270	-34,469	-3,128	-14,851	1	-8,905	0	0	0	0	0	-81,622
1929	0	0	0	0		0	0	0	0	0	0	0	0
1930	0	0	0	0	0	0	0	0	0	0	0	0	0
1931	0	0	0	0	0	0	0	0	0	0	0	0	0
1932	0	0	0	0	0	0	0	0	0	0	0	0	0
1933	0	0	0	0	0	0	0	0	0	0	0	0	0
1934	0	0	0	0	0	0	0	0	0	0	0	0	0
1935	0	0	0	0	0	0	0	0	0	0	0	0	0
1936	0	0	0	0	-247,039	-16,890	-3,635	0	0	0	0	0	-267,564
1937	0	0	0	0	-16,200	-3,195	-8,513	0	0	0	0	0	-27,908
1938	0	0	-19,590	0	0	-39	-7,143	-17,014	-4,880	0	-2,173	-5	-50,844
1939	0	0	0	0	0	0	0	0	0	0	0	0	0
1940	0	0	0	0	0	-38,195	-5,678	0	0	0	0	0	-43,873
1941	0	0	0	3,311	-446	-422	-519	0	-3,536	-2,184	-5	0	-3,801
1942	0	0	0	-5,542	1	-2,664	-5,524	-2,854	-2,762	-2,188	0	0	-21,533
1943	0	0	0	0	0	-2,001	-6,721	0	-4,299	0	-2,174	-5	-15,200
1944	0	0	0	0	0	0	0	0	0	0	0	0	0
1945	0	0	0	0	-37,456	-15,315	-202	0	0	0	0	0	-52,973
1946	0	7,308	106	0	0	-12,208	-3,612	0	0	0	0	0	-8,406
1947	0	0	0	0	0	0	0	0	0	0	0	0	0
1948	0	0	0	0	0	0	0	0	0	0	0	0	0
1949	0	0	0	0	0	0	0	0	0	0	0	0	0
1950	0	0	0	0	0	0	0	0	0	0	0	0	0
1951	0	0	-116,554	3	0	0	0	0	0	0	0	0	-116,551
1952	0	0	0	0	-21,357	0	0	-15,879	-2,117	0	-2,174	-4	-41,531
1953	0	0	0	0	0	0	0	0	0	0	0	0	0
1954	0	0	0	0	0	0	0	0	0	0	0	0	0
1955	0	0	0	0	0	0	0	0	0	0	0	0	0
1956	0	0	-37,068	-38,536	5	-3,555	-3,068	0	-9,334	-2,188	0	0	-93,744
1957	0	0	0	0	0	0	0	0	0	0	0	0	0
1958	0	0	0	0	0	-38,458	0	-11,490	-1,013	-2,188	0	0	-53,149
1959	0	0	0	0	0	0	0	0	0	0	0	0	0
1960	0	0	0	0	0	0	0	0	0	0	0	0	0
1961	0	0	0	0	0	0	0	0	0	0	0	0	0
1962	0	0	0	0	0	0	0	0	0	0	0	0	0
1963	0	0	0	0	0	0	0	0	0	0	0	0	0
1964	0	0	0	0	-11,774	0	0	0	0	0	0	0	-11,774
1965	0	0	0	-185,736	-5,132	-10,710	-9,769	0	0	0	11,003	24	-200,320
1966	0	1	-1,152	0	-17,169	0	0	0	0	0	0	0	-18,320
1967	0	0	0	0	0	-18,498	0	-12,427	0	-2,188	-2,184	-5	-35,302
1968	0	0	0	0	0	0	0	0	0	0	0	0	0
1969	0	0	0	-25,244	-2,448	-10,837	-7,641	-2,188	-2,117	0	-2,174	-4	-52,653
1970	0	0	0	26,596	-5,957	-21,074	0	0	0	0	0	0	-435
1971	0	0	0	0	0	-15,532	0	0	0	0	0	0	-15,532
1972	0	0	0	0	0		0	0	0	0	0	0	0
1973	0	0	0	0	0	-7,204	-620	0	-60,390	0	0	0	-68,214
1974	0	0	0	-8,392	1	-10,465	-4,603	0	-9,907	0	-2,174	-5	-35,545
1975	0	0	0	0	0		-8,286	0	6,521	-2,183	-4	0	-3,952
1976	0	0	0	0	0	0	0	0	0	0	0	0	0
1977	0	0	0	0	0	0	0	0	0	0	0	0	0
1978	0	0	0		0			0	-89,483	0	0	0	-89,483
1979	0	0	0	-3,565	0	-16,219	-2,118	-2,188	0	0	0	0	-24,090
1980	0	0	0	7,641	-1	-7,611	-4,879	-2,188	-2,118	-2,188	0	0	-11,344
1981	0	0	0	0	0	0	0	0	0	0	0	0	0
1982	0	0	0	-27,215	-11,551	0	0	-1,903	-1,841	0	-4,358	-2,127	-48,995
1983	-1,046	2,762	-952	-1	0	0	0	-9,542	-4,603	-2,188	0	-2,180	-17,750
1984	0	1,539	0	0		3,936	0	0	0	0	0	0	5,475
1985	0	0	0	0	0		0	0	0	0	0	0	0
1986	0	0	0	0	-17,113	-20,127	-11,300	-5,042	-4,880	0	0	-2,167	-60,629
1987	0	0	0	0			0	0	0	0	0	0	0
1988	0	0	0	0	0	0	0	0	0	0	0	0	0
1989	0	0	0	0	0	0	0	0	0	0	0	0	0
1990	0	0	0	0	0	0	0	0	0	0	0	0	0
1991	0	0	0	0	0	0	0	0	0	0	0	0	0
1992	0	0	0	0	0	0	0	0	0	0	0	0	0
1993	0	0	0	0	0	0	0	0	-130,387	-63,291	-21,886	-4,889	-220,453
1994	0	0	0	0	0	0	0	0	0	0	0	0	0
1995	0	0	0	0	0	-9,263	-9,206	-1,903	-1,842	-2,188	0	-2,177	-26,579
1996	0	0	0	0	-1,694	0	-4,880	-5,042	-4,880	0	0	-2,167	-18,663
1997	0	-3	0	-6,208		0		0	0	0	0	0	-6,210
1998	0	0	0	-18,722	3	-3,119	-11,048	-3,900	-3,774	-2,188	0	0	-42,748
1999	0	0	0	0	0	-8,562	-10,982	0	0	0	0	0	-19,544
2000	0	0	0	0	-19,094	0	0	0	-12,476	0	0	0	-31,570
2001	0	0	0	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0	0	0	0
Avg (21-02)	-13	-106	-2,557	-3,472	-5,298	-3,768	-1,849	-1,141	-4,793	-1,065	-454	-352	-24,868
Max (21-02)	0	7,308	106	26,596	5	3,936	0	0	6,521	0	11,003	24	5,475
Min (21-02)	-1,046	-20,270	-116,554	-185,736	-247,039	-38,458	-11,300	-17,014	-130,387	-63,291	-21,886	-13,156	-267,564

Table 3.1-4
Total La Grange Release to River (Acre-feet) - Difference WSIP minus Base
Matrix Data for Water Year 1921-2002 Rank Ordered by Descending SJR Index

Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	WY Total
1983	-1,046	2,762	-952	-1	0	0	0	-9,542	-4,603	-2,188	0	-2,180	-17,750
1969	0	0	0	-25,244	-2,448	-10,837	-7,641	-2,188	-2,117	0	-2,174	-4	-52,653
1995	0	0	0	0	0	-9,263	-9,206	-1,903	-1,842	-2,188	0	-2,177	-26,579
1938	0	0	-19,590	0	0	-39	-7,143	-17,014	-4,880	0	-2,173	-5	-50,844
1998	0	0	0	-18,722	3	-3,119	-11,048	-3,900	-3,774	-2,188	0	0	-42,748
1982	0	0	0	-27,215	-11,551	0	0	-1,903	-1,841	0	-4,358	-2,127	-48,995
1967	0	0	0	0	0	-18,498	0	-12,427	0	-2,188	-2,184	-5	-35,302
1952	0	0	0	0	-21,357	0	0	-15,879	-2,117	0	-2,174	-4	-41,531
1958	0	0	0	0	0	-38,458	0	-11,490	-1,013	-2,188	0	0	-53,149
1980	0	0	0	7,641	-1	-7,611	-4,879	-2,188	-2,118	-2,188	0	0	-11,344
1978	0	0	0	0	0	0	0	0	-89,483	0	0	0	-89,483
1922	0	0	0	0	-5,134	-7,312	-7,365	0	-16,036	-2,183	-5	0	-38,035
1956	0	0	-37,068	-38,536	5	-3,555	-3,068	0	-9,334	-2,188	0	0	-93,744
1942	0	0	0	-5,542	1	-2,664	-5,524	-2,854	-2,762	-2,188	0	0	-21,533
1941	0	0	0	3,311	-446	-422	-519	0	-3,536	-2,184	-5	0	-3,801
1986	0	0	0	0	-17,113	-20,127	-11,300	-5,042	-4,880	0	0	-2,167	-60,629
1993	0	0	0	0	0	0	0	0	-130,387	-63,291	-21,886	-4,889	-220,453
1997	0	-3	0	-6,208	1	0	0	0	0	0	0	0	-6,210
1996	0	0	0	0	-1,694	0	-4,880	-5,042	-4,880	0	0	-2,167	-18,663
1943	0	0	0	0	0	-2,001	-6,721	0	-4,299	0	-2,174	-5	-15,200
1937	0	0	0	0	-16,200	-3,195	-8,513	0	0	0	0	0	-27,908
1974	0	0	0	-8,392	1	-10,465	-4,603	0	-9,907	0	-2,174	-5	-35,545
1975	0	0	0	0	0	0	-8,286	0	6,521	-2,183	-4	0	-3,952
1965	0	0	0	-185,736	-5,132	-10,710	-9,769	0	0	0	11,003	24	-200,320
1936	0	0	0	0	-247,039	-16,890	-3,635	0	0	0	0	0	-267,564
1984	0	1,539	0	0	0	3,936	0	0	0	0	0	0	5,475
1979	0	0	0	-3,565	0	-16,219	-2,118	-2,188	0	0	0	0	-24,090
1945	0	0	0	0	-37,456	-15,315	-202	0	0	0	0	0	-52,973
1999	0	0	0	0	0	-8,562	-10,982	0	0	0	0	0	-19,544
1963	0	0	0	0	0	0	0	0	0	0	0	0	0
1927	0	0	0	0	0	0	0	0	-26,907	0	-8,945	-13,156	-49,008
1935	0	0	0	0	0	0	0	0	0	0	0	0	0
1946	0	7,308	106	0	0	-12,208	-3,612	0	0	0	0	0	-8,406
1973	0	0	0	0	0	-7,204	-620	0	-60,390	0	0	0	-68,214
1932	0	0	0	0	0	0	0	0	0	0	0	0	0
2000	0	0	0	0	-19,094	0	0	0	-12,476	0	0	0	-31,570
1940	0	0	0	0	0	-38,195	-5,678	0	0	0	0	0	-43,873
1923	0	0	0	0	0	0	-2,118	0	0	0	0	0	-2,118
1921	0	0	0	0	0	-13,402	-3,254	0	0	0	0	0	-16,656
1970	0	0	0	26,596	-5,957	-21,074	0	0	0	0	0	0	-435
1951	0	0	-116,554	3	0	0	0	0	0	0	0	0	-116,551
1962	0	0	0	0	0	0	0	0	0	0	0	0	0
1953	0	0	0	0	0	0	0	0	0	0	0	0	0
1957	0	0	0	0	0	0	0	0	0	0	0	0	0
1925	0	0	0	0	0	0	0	0	0	0	0	0	0
1971	0	0	0	0	0	-15,532	0	0	0	0	0	0	-15,532
1950	0	0	0	0	0	0	0	0	0	0	0	0	0
1944	0	0	0	0	0	0	0	0	0	0	0	0	0
1954	0	0	0	0	0	0	0	0	0	0	0	0	0
1948	0	0	0	0	0	0	0	0	0	0	0	0	0
1928	0	-20,270	-34,469	-3,128	-14,851	1	-8,905	0	0	0	0	0	-81,622
1949	0	0	0	0	0	0	0	0	0	0	0	0	0
1966	0	1	-1,152	0	-17,169	0	0	0	0	0	0	0	-18,320
1933	0	0	0	0	0	0	0	0	0	0	0	0	0
1981	0	0	0	0	0	0	0	0	0	0	0	0	0
1985	0	0	0	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0	0	0	0
1926	0	0	0	0	0	0	0	0	0	0	0	0	0
1955	0	0	0	0	0	0	0	0	0	0	0	0	0
1959	0	0	0	0	0	0	0	0	0	0	0	0	0
1968	0	0	0	0	0	0	0	0	0	0	0	0	0
1939	0	0	0	0	0	0	0	0	0	0	0	0	0
2001	0	0	0	0	0	0	0	0	0	0	0	0	0
1964	0	0	0	0	-11,774	0	0	0	0	0	0	0	-11,774
1947	0	0	0	0	0	0	0	0	0	0	0	0	0
1972	0	0	0	0	0	0	0	0	0	0	0	0	0
1994	0	0	0	0	0	0	0	0	0	0	0	0	0
1930	0	0	0	0	0	0	0	0	0	0	0	0	0
1929	0	0	0	0	0	0	0	0	0	0	0	0	0
1989	0	0	0	0	0	0	0	0	0	0	0	0	0
1991	0	0	0	0	0	0	0	0	0	0	0	0	0
1987	0	0	0	0	0	0	0	0	0	0	0	0	0
1960	0	0	0	0	0	0	0	0	0	0	0	0	0
1976	0	0	0	0	0	0	0	0	0	0	0	0	0
1992	0	0	0	0	0	0	0	0	0	0	0	0	0
1990	0	0	0	0	0	0	0	0	0	0	0	0	0
1988	0	0	0	0	0	0	0	0	0	0	0	0	0
1934	0	0	0	0	0	0	0	0	0	0	0	0	0
1924	0	0	0	0	0	0	0	0	0	0	0	0	0
1961	0	0	0	0	0	0	0	0	0	0	0	0	0
1931	0	0	0	0	0	0	0	0	0	0	0	0	0
1977	0	0	0	0	0	0	0	0	0	0	0	0	0

APPENDIX O4

Figure 3.2-1
San Joaquin River Flow Upstream of Stanislaus River Confluence - October through December

October

November

December

APPENDIX O4

Figure 3.2-2
San Joaquin River Flow Upstream of Stanislaus River Confluence - January through March
January

February

March

APPENDIX O4

Figure 3.2-3
San Joaquin River Flow Upstream of Stanislaus River Confluence - April through June
April

May

June

APPENDIX O4

Figure 3.2-4
San Joaquin River Flow Upstream of Stanislaus River Confluence - July through August
July

August

September

APPENDIX O4

flow at La Grange Dam superimposed on that flow. The illustration depicts the current flow in the San Joaquin River and how the flow is projected to change due to the WSIP. Consistent with the discussion of flow changes at La Grange Dam, the figures for Maze flow illustrate that the projected flow changes at Maze would typically occur during wetter years, and that the more sizeable changes in flow would occur during years when the flows at Maze are relatively large.

3.3 Stanislaus River

The USBR operates the New Melones Project for several purposes, including flow and water quality conditions in the Stanislaus River and the San Joaquin River below the Stanislaus River confluence. Because the USBR has responsibility for San Joaquin River flow and water quality objectives, the agency will at times utilize New Melones Project releases to achieve compliance with those objectives. During these times, the USBR may provide flows from the Stanislaus River to supplement flows in the San Joaquin River. These supplemental flows may either provide for flow compliance at Vernalis or may provide dilution flow to comply with downstream water quality objectives. Changes in flow or water quality conditions upstream of the Stanislaus River such as would occur under the WSIP could at times cause a reaction of New Melones Project operations to maintain compliance with downstream water quality or flow objectives.

An analysis was conducted to identify the frequency at which the WSIP could affect the USBR's operation of the New Melones Project; the analysis consisted of superimposing the occurrence of flow changes at La Grange Dam upon the projected periods when releases from New Melones could be made explicitly for San Joaquin River flow or water quality compliance. Table 3.3-1 illustrates the results of the analysis. The numeric values shown in Table 3.3-1 represent the period and magnitude of the flow changes at La Grange Dam due to the WSIP. For instance, in June of 1922, there is a 16,000-acre-foot reduction in releases projected at La Grange Dam. In this instance, there is no release from the Stanislaus River explicitly for either water quality or flow conditions at Vernalis. Therefore, the change in releases at La Grange Dam would not lead to a change in Stanislaus River operations, and thus the change at La Grange Dam would track directly downstream in the San Joaquin River to Vernalis.

As illustrated in Table 3.3-1, only rarely (3 monthly instances within the 82-year analysis) would there be a potential conflict between WSIP-induced changes in releases and periods of controlled releases from the Stanislaus River for San Joaquin River flow or water quality conditions. The rarity of occurrence is expected, as the WSIP-induced effect would typically occur during wetter years when there are sufficient flows in the San Joaquin River and explicit releases from the Stanislaus River would not be required to achieve compliance with downstream water quality and flow objectives. The rare instances of potential conflict occurred during periods when flow objectives at Vernalis were a controlling condition of operations, and only once during a coincidental time of water quality control. If the flow in the San Joaquin River from the Tuolumne River was reduced during these periods of control, the USBR might increase its release from the Stanislaus River (or from other sources) to counter the reduction.

In those few instances, if the USBR released additional water to the Stanislaus River to offset the reduction in flow from the Tuolumne River, storage in New Melones Reservoir (maximum storage of over $2,400,000$ acre-feet) could be reduced by the amount of the additional release. This reduction in storage could have an effect on a year's allocation of water to the several USBR uses of Stanislaus River water. These uses include deliveries to CVP New Melones Project water contractors and the instream fishery releases. The frequency and magnitude of such potential reductions was estimated through additional review of study results. In two of the three instances when a supplemental release by the USBR could occur (27,000 acre-feet in June 1927, and 12,000 acre-feet in February 1964), a reduction in New Melones Reservoir storage could carry into a year's allocation of deliveries to CVP contractors and fishery releases. For the 1927 example, CVP deliveries to the Stanislaus River contractors could be reduced by about 3,000 acre-feet in 1928 (out of a projected 46,000 acre-feet of delivery for that year). The allocated annual fishery releases could be reduced by about 12,000 acre-feet during a year like 1928, but that potential reduction would be incidentally countered with the 27,000 acre-feet increase in release due to the reaction to the decrease in flow from the Tuolumne River; thus, on an annual basis the Stanislaus River could experience greater flow in such a year. CVP Stanislaus River contractors currently receive an allocation of up to 90,000 afy, with sequential periods of no deliveries. The reduction in CVP deliveries

APPENDIX O4

during 1928 would represent about a 6 percent reduction in CVP supply during that year, a supply that is zero during a quarter of the time.

In the second instance, February 1964, a reduction in New Melones Reservoir storage could affect the current year's allocations of water supply. The estimated effect in that year to CVP Stanislaus River contractors would be zero, as no water supply was allocated to the contractors. Annual fishery releases would again be reduced for the year (about 6,000 acre-feet), but the river would incidentally have an increase in release of 12,000 acre-feet in February. A reduction to the CVP contractors' supply would not occur until a couple of years later, if at all, and within current allocation procedures would amount to about 1,000 acre-feet.

The third instance of potential effect on New Melones Project operations (June 1973) potentially occurs subsequent to the time that the current year's water supply allocations are made, thereby not affecting 1973 operations except for a reduction in New Melones Reservoir storage carried into 1974. Hydrology during 1974 is sufficiently wet that New Melones Reservoir is projected to spill during filling; thus, the additional release during 1973 would not affect water supply allocations in a subsequent year.

3.4 San Joaquin River at Vernalis

Current flow and water quality conditions at Vernalis are described in Section 2 above, and the potential changes in flow to the San Joaquin River due to WSIP-induced changes from the Tuolumne River are shown in Table 3.1-4. As described in Section 3.3 above, there would only be a rare instance when Stanislaus River operations would react to changes in the San Joaquin River due to the WSIP. Therefore, in almost all circumstances, the change in La Grange flows would track as a change in San Joaquin River flow at Vernalis (inflow to the Delta). While the absolute water quality at Vernalis would be slightly reduced with the reduction of Tuolumne River flow (which is of better quality), water quality objectives at Vernalis would continue to be met. Flow objectives at Vernalis would continue to be met if the USBR meets those objectives.

3.5 Sacramento-San Joaquin Delta

The CVP and SWP have the responsibility of providing compliance with the Delta water quality objectives prescribed by SWRCB Decision 1641. Additional operational constraints on the CVP and SWP are in place as a result of biological opinions and court decisions. The CVP and SWP would react to WSIP-induced changes to inflow to the Delta from the San Joaquin River. These reactions could manifest as changes in upstream releases or changes in exports from the southern Delta. A post-process analysis was used to identify the frequency and magnitude of the potential reaction of the CVP and SWP. Similar to the analysis described for the Stanislaus River and San Joaquin River evaluation, this analysis contrasts changes in La Grange Dam releases against Delta operational conditions.

Two different types of indicator analysis are used. The first is used to identify the coincidence of Tuolumne River flow changes and Delta "balanced conditions." A Delta balanced condition is the period of time when the CVP and SWP are explicitly balancing reservoir releases with export operations to provide a certain Delta outflow to meet either flow or water quality objectives in the Delta. A change in flow (e.g., from the San Joaquin River) would lead to the CVP and SWP modifying their reservoir releases or exports to react to the change in flow to the Delta. During periods when the Delta is in a balanced condition, a change in San Joaquin River flow could cause a change in CVP and SWP operations. During periods when the Delta is in an "excess condition," the change in flow would not necessitate a change in releases, but could cause a change in exports, as described later.

Table 3.5-1 contrasts Tuolumne River flow changes due to the WSIP against those periods when the Delta is projected to be in a balanced condition. The CalSim II study used for this analysis is derived from the report entitled Draft State Water Project Delivery Reliability Report (DWR, 2007). ${ }^{3}$ The study represents a depiction of current CVP and SWP operations as affected by current regulatory requirements, including the emergency remedy measures specified by Judge Wanger to protect delta

[^8]
APPENDIX O4

Table 3．3－1
Coincidence of Periods of New Melones Vernalis Water and Flow Releases and La Grange Flow Changes

Water Yr	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1922	0	0	0	0	－5	． 7	－7	0	－16	－2	0	0
1923	0	0	0	0	0	王	－2	0	年	0	0	0
1924	0	0	0	0	0	0	0	0	0	0	0	0
1925	0	0	0	0	0	0	0	0	0	0	0	0
1926	0	0	0	0	0	＋	0	\＃	0	0	0	0
1927	0	0	0	0	0	年	0	0	\％年	0	－9	－13
1928	0	－20	－34	－ 3	－15	0	－9	0	0	0	0	0
1929	0	0	0	0	0	0	0	0	0	0	0	0
1930	0	0	0	0	0	0	0	0	0	0	0	0
1931	0	0	0	0	0	0	0	0	0	0	0	0
1932	0	，	0	0	0	0	年	0	栕	0	0	0
1933	0	0	0	0	0	0	$\stackrel{\square}{\square}$	0	0	0	0	0
1934	0	0	0	0	0	0	0	0	0	0	0	0
1935	0	0	0	0	0	自	0	0	我	0	0	0
1936	0	0	0	0	－247	－17	4	0	，隹	0	0	0
1937	0	0	0	0	－16	－3	－9	0	（	0	0	0
1938	0	0	－20	0	0	0	－7	－17	－5	0	－2	0
1939	0	0	0	0	0	0	年	0	0	0	0	0
1940	0	0	0	0	0	－38	6	0	开	0	0	0
1941	0	0	0	3	0	0	－1	0	4	－2	0	0
1942	0	0	0	6	0	－3	6	－3	－3	－2	0	0
1943	0	0	0	0	0	－2	－7	0	4	0	－2	0
1944	0	0	0	0	0	0	0	0	0	0	0	0
1945	0	0	0	0	－37	－15	0	0	位	0	0	0
1946	0	7	0	0	0	－12	4	0	0	0	0	0
1947	0	0	0	0	0	（	年	0	0	0	0	0
1948	0	0	0	0	（	0	0	0	析	0	0	0
1949	0	0	0	0	0	0	0	－	0	0	0	0
1950	0	0	0	0	0	0	0	4	0	0	0	0
1951	0	0	－117	0	0	0	0	Il	釆	0	0	0
1952	0	0	0	0	－21	0	0	－16	－2	0	－2	0
1953	0	0	0	0	0	－	0	0	0	0	0	0
1954	0	0	0	0	0	¢	0	0	0	0	0	0
1955	0	0	0	0	年	0	0	0	蒠	0	0	0
1956	0	0	－37	－39	0	4	－3	0	－9	－2	0	0
1957	0	0	0	0	0	$\underline{+}$	0	0	0	0	0	0
1958	0	0	0	0	0	－38	0	－11	－1	－2	0	0
1959	0	0	0	0	0	0	年	0	$\underline{\square}$	0	0	0
1960	0	0	0	0	0	0	0	0	0	0	0	0
1961	0	0	0	0	0	0	0	0	0	0	0	0
1962	0	0	0	0	0	0	0	車	0	0	0	0
1963	0	0	0	0	II	开	0	（1）	年	0	0	0
1964	0	0	0	0	T2	0	0	0	析	0	0	0
1965	0	0	0	－186	－5	－11	－10	0	0	0	11	0
1966	0	0	－1	0	－17	0	0	0	侢	0	0	0
1967	0	0	0	0	（	－18	0	－12	0	－2	－2	0
1968	0	0	0	0	0	0	0	0	0	0	0	0
1969	0	0	0	－25	－2	－11	－8	－2	－2	0	－2	0
1970	0	0	0	27	6	－21	－	0	年	0	0	0
1971	0	0	0	0	0	－16	0	0	0	0	0	0
1972	0	0	0	0	0	0	\＃	0	年	0	0	0
1973	0	0	0	0	0	． 7	－1	0	¢606	0	0	0
1974	0	0	0	－8	0	－10	－5	0	－10	0	－2	0
1975	0	0	0	0	0	0	8	年	7	－2	0	0
1976	0	0	0	0	0	0	0	0	0	0	0	0
1977	0	0	0	0	0	0	0	0	0	0	0	0
1978	0	0	0	0	0	0	0	0	－89	0	0	0
1979	0	0	0	4	0	－16	－2	－2	年	0	0	0
1980	0	0	0	8	0	－8	－	－2	－2	－2	0	0
1981	0	0	0	0	0	0	0	0	0	0	0	0
1982	0	0	0	－27	－12	0	0	－2	－2	0	4	－2
1983	－1	3	－1	0	0	0	0	－10	－5	－2	0	－2
1984	0	2	0	0	0	4	0	0	0	0	0	0
1985	0	0	0	0	0	0	0	0	0	0	0	0
1986	0	0	0	0	－17	－20	－11	5	－5	0	0	－2
1987	0	0	0	0	0	0	0	0	0	0	0	0
1988	0	0	0	0	0	0	0	0	0	0	0	0
1989	0	0	0	0	0	0	0	0	0	0	0	0
1990	0	0	0	0	0	0	－	0	0	0	0	0
1991	0	0	0	0	0	0	0	0	0	0	0	0
1992	0	0	0	0	0	0	0	0	位	0	0	0
1993	0	0	0	0	0	0	0	－	－130	－63	－22	5
1994	0	0	0	0	0	0	0	0	0	0	0	0
1995	0	0	0	0	0	－9	－9	－2	－2	－2	0	－2
1996	0	0	0	0	－2	0	－5	5	－5	0	0	－2
1997	0	0	0	6	0	0	－	0	0	0	0	0
1998	0	0	0	－19	0	－3	－11	4	4	－2	0	0
1999	0	0	0	0	0	－9	－11	0	年	0	0	0
2000	0	0	0	0	－19	0	0	0	－12	0	0	0
2001	0	0	0	0	0	0	－	0	0	0	0	0
2002	0	0	0	0	0	0	年	0	敇	0	0	0
Key		es of r	New 1	releas	Vernalis	quality			\longleftrightarrow	s of p	confli	
		es of r	New	releas	Vernalis				－5	ge flow	ge（TA）	

APPENDIX O4

smelt. The measures required by the court will be in place for an interim period, and a revised biological opinion and OCAP (Operations Criteria \& Plan) could lead to different operational requirements. However, this study provides the best available depiction of current CVP and SWP operations in a format that is usable for this analysis. Also, while measures that are ultimately implemented by the CVP and SWP may differ from those measures assumed in this analysis, the conclusions of this analysis are not expected to significantly change.

Table 3.5-1 illustrates that the vast majority of instances of Tuolumne River flow change occur during Delta excess conditions. During these periods, it is unlikely that the CVP or SWP would modify their upstream reservoir operations in reaction to a change in inflow from the San Joaquin River. There are 26 months (out of the 82-year [984-month] simulation) during which a change in flow occurs during Delta balanced conditions. When there was a change, the change ranged from minimal (17 instances less than 10,000 acre-feet in a month) to three instances of change greater than 60,000 acre-feet in a month (June 1973: 60,000 acre-feet; June 1978: 89,000 acre-feet; and July 1993: 63,000 acre-feet). The average annual reduction in inflow during balanced conditions amounts to 7,000 acre-feet. When these reductions in inflow to the Delta occur, the CVP and SWP may elect to increase reservoir releases, decrease exports, or a combination of both. The larger instances of change occur during months when Don Pedro Reservoir is refilling during wetter years subsequent to prolonged drought.

A second analysis is used to identify the potential effect on CVP and SWP exports due to San Joaquin River flow changes. This second analysis is separate, but at times linked to the analysis previously described. During Delta balanced conditions, the CVP and SWP could choose whether to adjust releases or exports in reaction to a change in San Joaquin River flow into the Delta. However, current operational constraints can separately limit exports based on hydraulic conditions in the south Delta. Table 3.5-2 illustrates a bookend potential effect that WSIP-induced San Joaquin River flow changes could have on CVP and SWP exports. The analysis is focused on the January through June time period, which is the primary focus of the Judge Wanger emergency remedy measures to protect delta smelt. During this period, the allowable reverse flows in Old and Middle River are established. These flows are dependent on the hydraulics of the south Delta, including the amount of water that enters the Delta from the San Joaquin River. A general rule-of-thumb is that about 50 percent of the flow at Vernalis affects the flow in Old and Middle Rivers, and exports have almost a direct (1:1) effect on flow in Old and Middle Rivers. Thus, about one-half of the change in flow in the San Joaquin River will affect the amount of allowed export. Table 3.5-2 reports the amount of change in allowed export (in cfs) that would occur due to WSIPinduced reductions in flow in the San Joaquin River during the January through June period. The potential average annual effect on CVP and SWP exports amounts to approximately 10,000 afy. About half of the years of the analysis resulted in essentially no change in potential exports, and the remainder of the years showed a potential annual change ranging from 5,000 acre-feet to up to about 130,000 acre-feet. This analysis may overstate the reduction of exports due to WSIP-induced reductions in inflow to the Delta. The method of the analysis does not consider the shifting of export operations by the CVP and SWP to reduce the potential loss of exports. Nor does the analysis consider the potential occurrence of extremely high flow conditions in the San Joaquin River that would ameliorate the effect of a WSIP-induced flow reduction in the San Joaquin River.

As described above, the CVP and SWP operate their systems in an integrated and coordinated fashion, and, when a difference in hydrology occurs (such as a WSIP-induced flow change to the Delta), the CVP and SWP generally have two means to react: a change in releases and/or a change in exports. The two separate isolated analyses described above indicate the magnitude and frequency of changes in Delta inflow from the WSIP-induced effect on Don Pedro Project operations. The two separate potential CVP/SWP effects described above are not always additive, as the projects could select one export or release reaction over the other, or a combination of both.

APPENDIX O4

Table 3.5-1
Coincidence of La Grange Flow Changes and Delta Balanced and Excess Conditions

Water Yr	Oct\|	Nov	Dec\|	Jan	Feb	Mar	Apr\|	May	Jun	Jul	Aug	Sep	WY Total
1922	0	0	0	0	-5	-7	-7	0	-16	-2	0	0	-38
1923	0	0	0	0	0	0	-2	0	0	0	0	0	-2
1924	0	0	0	0	0	0	0	0	0	0	0	0	0
1925	0	0	0	0	0	0	0	0	0	0	0	0	0
1926	0	0	0	0	0	0	0	0	0	0	0	0	0
1927	0	0	0	0	0	0	0	0	-27	0	-9	-13	-49
1928	0	-20	-34	-3	-15	0	-9	0	0	0	0	0	-82
1929	0	0	0	0	0	0	0	0	0	0	0	0	0
1930	0	0	0	0	0	0	0	0	0	0	0	0	0
1931	0	0	0	0	0	0	0	0	0	0	0	0	0
1932	0	0	0	0	0	0	0	0	0	0	0	0	0
1933	0	0	0	0	0	0	0	0	0	0	0	0	0
1934	0	0	0	0	0	0	0	0	0	0	0	0	0
1935	0	0	0	0	0	0	0	0	0	0	0	0	0
1936	0	0	0	0	-247	-17	-4	0	0	0	0	0	-268
1937	0	0	0	0	-16	-3	-9	0	0	0	0	0	-28
1938	0	0	-20	0	0	0	-7	-17	-5	0	-2	0	-51
1939	0	0	0	0	0	0	0	0	0	0	0	0	0
1940	0	0	0	0	0	-38	-6	0	0	0	0	0	-44
1941	0	0	0	3	0	0	-1	0	-4	-2	0	0	-4
1942	0	0	0	-6	0	-3	-6	-3	-3	-2	0	0	-22
1943	0	0	0	0	0	-2	-7	0	-4	0	-2	0	-15
1944	0	0	0	0	0	0	0	0	0	0	0	0	0
1945	0	0	0	0	-37	-15	0	0	0	0	0	0	-53
1946	0	7	0	0	0	-12	-4	0	0	0	0	0	-8
1947	0	0	0	0	0	0	0	0	0	0	0	0	0
1948	0	0	0	0	0	0	0	0	0	0	0	0	0
1949	0	0	0	0	0	0	0	0	0	0	0	0	0
1950	0	0	0	0	0	0	0	0	0	0	0	0	0
1951	0	0	-117	0	0	0	0	0	0	0	0	0	-117
1952	0	0	0	0	-21	0	0	-16	-2	0	-2	0	-42
1953	0	0	0	0	0	0	0	0	0	0	0	0	0
1954	0	0	0	0	0	0	0	0	0	0	0	0	0
1955	0	0	0	0	0	0	0	0	0	0	0	0	0
1956	0	0	-37	-39	0	-4	-3	0	-9	-2	0	0	-94
1957	0	0	0	0	0	0	0	0	0	0	0	0	0
1958	0	0	0	0	0	-38	0	-11	-1	-2	0	0	-53
1959	0	0	0	0	0	0	0	0	0	0	0	0	0
1960	0	0	0	0	0	0	0	0	0	0	0	0	0
1961	0	0	0	0	0	0	0	0	0	0	0	0	0
1962	0	0	0	0	0	0	0	0	0	0	0	0	0
1963	0	0	0	0	0	0	0	0	0	0	0	0	0
1964	0	0	0	0	-12	0	0	0	0	0	0	-	-12
1965	0	0	0	-186	-5	-11	-10	0	0	0	11	0	-200
1966	0	0	-1	0	-17	0	0	0	0	0	0	0	-18
1967	0	0	0	0	0	-18	0	-12	0	-2	-2	0	-35
1968	0	0	0	0	0	0	0	0	0	0	0	0	0
1969	0	0	0	-25	-2	-11	-8	-2	-2	0	-2	0	-53
1970	0	0	0	27	-6	-21	0	0	0	0	0	0	0
1971	0	0	0	0	0	-16	0	0	0	0	0	0	-16
1972	0	0	0	0	0	0	0	0	0	0	0	0	0
1973	0	0	0	0	0	-7	-1	0	-60	0	0	0	-68
1974	0	0	0	-8	0	-10	-5	0	-10	0	-2	0	-36
1975	0	0	0	0	0	0	-8	0	7	-2	0	0	-4
1976	0	0	0	0	0	0	0	0	0	0	0	0	0
1977	0	0	0	0	0	0	0	0	0	0	0	0	0
1978	0	0	0	0	0	0	0	0	-89	0	0	0	-89
1979	0	0	0	-4	0	-16	-2	-2	0	0	0	0	-24
1980	0	0	0	8	0	-8	-5	-2	-2	-2	0	0	-11
1981	0	0	0	0	0	0	0	0	0	0	0	0	0
1982	0	0	0	-27	-12	0	0	-2	-2	0	-4	-2	-49
1983	-1	3	-1	0	0	0	0	-10	-5	-2	0	-2	-18
1984	0	2	0	0	0	4	0	0	0	0	0	0	5
1985	0	0	0	0	0	0	0	0	0	0	0	0	0
1986	0	0	0	0	-17	-20	-11	-5	-5	0	0	-2	-61
1987	0	0	0	0	0	0	0	0	0	0	0	0	0
1988	0	0	0	0	0	0	0	0	0	0	0	0	0
1989	0	0	0	0	0	0	0	0	0	0	0	0	0
1990	0	0	0	0	0	0	0	0	0	0	0	0	0
1991	0	0	0	0	0	0	0	0	0	0	0	0	0
1992	0	0	0	0	0	0	0	0	0	0	0	0	0
1993	0	0	0	0	0	0	0	0	-130	-63	-22	-5	-220
1994	0	0	0	0	0	0	0	0	0	0	0	0	0
1995	0	0	0	0	0	-9	-9	-2	-2	-2	0	-2	-27
1996	0	0	0	0	-2	0	-5	-5	-5	0	0	-2	-19
1997	0	0	0	-6	0	0	0	0	0	0	0	0	-6
1998	0	0	0	-19	0	-3	-11	-4	-4	-2	0	0	-43
1999	0	0	0	0	0	-9	-11	0	0	0	0	0	-20
2000	0	0	0	0	-19	0	0	0	-12	0	0	0	-32
2001	0	0	0	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0	0	0	0
		f Delta	conditio	no poter	conflict								
		eflow	(AF)										

APPENDIX O4

Table 3.5-2
Coincidence of La Grange Flow Changes and CVPISWP Export Constraints (January through June)

[^0]: 1 See "Estimated Effect of WSIP on Daily Releases below Hetch Hetchy Reservoir," Memorandum by Daniel B. Steiner, December 31, 2006.

[^1]: ${ }^{2}$ See "Analysis of SFPUC Pilarcitos/Coastside County Water District Operations," Memorandum by Daniel B. Steiner, March 8, 2007.

[^2]: 1 See Estimated Affect of WSIP on Daily Releases below Hetch Hetchy Reservoir, Memorandum by Daniel B. Steiner, December 31, 2006.

[^3]: ${ }^{2}$ See Analysis of SFPUC Pllarcitos/Coastside County Water District Operations, Memorandum by Daniel B. Steiner, March 8, 2007.

[^4]: ${ }^{1}$ See Estimated Affect of WSIP on Daily Releases below Hetch Hetchy Reservoir, Memorandum by Daniel B. Steiner, December 31, 2006.

[^5]: ${ }^{2}$ See Analysis of SFPUC Pilarcitos/Coastside County Water District Operations, Memorandum by Daniel B. Steiner, March 8, 2007.

[^6]: Source: Dayflow record, Interagency Ecological Progarm (http://www.iep.ca.gov/dayflow/)
 Total Exports: Banks PP, Jones PP, Contra Costa Pumping
 Sacramento River Inflow: Sacramento River and Yolo Byapss
 San Joaquin R Inflow: San Joaquin River at Vernalis
 Delta Outflow: Net computed outflow at Chipps Island

[^7]: ${ }^{1}$ CalSim II studies supporting a presentation of the San Joaquin River Group Authority to the State Water Resources Control Board regarding CalSim II - San Joaquin River Basin Development, Refinements and Results, April 24, 2006. Notice and materials of workshop can be found at http://www.waterrights.ca.gov/baydelta/Notices.htm.
 ${ }^{2}$ La Grange Dam release results are from the HH/LSM. Maze and San Joaquin River results are from CalSim II.

[^8]: ${ }^{3}$ Report and studies accessible at http://www.water.ca.gov.

